Abstract:
A method for registering a three dimensional (3D) coordinates system with a Medical Positioning System (MPS) coordinate system and with a two dimensional (2D) coordinate system, includes acquiring at least one 2D image of a volume of interest, the volume of interest including at least one tubular organ within the body of a patient. The 2D image is associated with the 2D coordinate system, and a plurality of MPS points is acquired, within the at least one tubular organ. The MPS points are associated with the MPS coordinate system, the MPS coordinate system being registered with the 2D coordinate system. A 3D image model is extracted of the at least one tubular organ form a pre-acquired 3D image of the volume of interest. A volumetric model of the at least one tubular organ from the 2D image is estimated and from the acquired MPS points, the 3D coordinate system is registered with the MPS coordinate system and with the 2D coordinate system by matching the extracted 3D image model and the estimated volumetric model of the at least one tubular organ.
Abstract:
Apparatus for generating an organ timing signal relating to an inspected organ within the body of a patient, including a medical positioning system, and a processor coupled with the medical positioning system, the medical positioning system including at least one reference electromagnetic transducer placed at a reference location, at least one inner electromagnetic transducer attached to a surgical tool inserted in a blood vessel in the vicinity of the inspected organ, and a medical positioning system processor coupled with the reference electromagnetic transducer and the inner electromagnetic transducer, the medical positioning system processor determining the three-dimensional position of the inner electromagnetic transducer, by processing transmitted electromagnetic signals transmitted from one of the reference electromagnetic transducer and the inner electromagnetic transducer with detected electromagnetic signals detected by the other of the reference electromagnetic transducer and the inner electromagnetic transducer, the medical positioning system processor further generating medical positioning system data sets, each of the medical positioning system data sets including a collection of three-dimensional position coordinate readings demonstrating the motion trajectory of the surgical tool over time, the processor generating the organ timing signal from the medical positioning system data sets by detecting and identifying periodic motion frequencies in the medical positioning system data sets, and filtering the periodic motion frequencies from the medical positioning system data sets.
Abstract:
A system for superimposing virtual anatomical landmarks on an image includes a medical positioning system (MPS) for producing location readings with respect to points within a region of interest in accordance with an output of a location sensor disposed in a medical device. A coordinate system of the MPS is registered with an image coordinate system. A control unit receives a signal from a user to record a location reading when the medical device is at a desired point in the region of interest where the user desires to place a virtual landmark, modifies the recorded location reading for motion compensation, transforms the motion-compensated location reading from the MPS coordinate system to the image coordinate system to produce a target location, and then superimposes a representation of the virtual landmark on the image at the target location.
Abstract:
A male coupler for a guidewire, the guidewire having a hollow walled tube, the male coupler comprising a connector section, coupled with the guidewire, a portion of the connector section having a diameter smaller than the diameter of the hollow tube, at least one conducting ring coupled with the connector section where the diameter of the connector section is smaller the diameter of the guidewire, wherein the diameter of connector section and the at least one conducting ring substantially equals the diameter of the guidewire.
Abstract:
A male coupler for a guidewire, the guidewire having a hollow walled tube, the male coupler comprising a connector section, coupled with the guidewire, a portion of the connector section having a diameter smaller than the diameter of the hollow tube, at least one conducting ring coupled with the connector section where the diameter of the connector section is smaller the diameter of the guidewire, wherein the diameter of connector section and the at least one conducting ring substantially equals the diameter of the guidewire.
Abstract:
Apparatus for generating an organ timing signal relating to an inspected organ within the body of a patient, including a medical positioning system, and a processor coupled with the medical positioning system, the medical positioning system including at least one reference electromagnetic transducer placed at a reference location, at least one inner electromagnetic transducer attached to a surgical tool inserted in a blood vessel in the vicinity of the inspected organ, and a medical positioning system processor coupled with the reference electromagnetic transducer and the inner electromagnetic transducer, the medical positioning system processor determining the three-dimensional position of the inner electromagnetic transducer, by processing transmitted electromagnetic signals transmitted from one of the reference electromagnetic transducer and the inner electromagnetic transducer with detected electromagnetic signals detected by the other of the reference electromagnetic transducer and the inner electromagnetic transducer, the medical positioning system processor further generating medical positioning system data sets, each of the medical positioning system data sets including a collection of three-dimensional position coordinate readings demonstrating the motion trajectory of the surgical tool over time, the processor generating the organ timing signal from the medical positioning system data sets by detecting and identifying periodic motion frequencies in the medical positioning system data sets, and filtering the periodic motion frequencies from the medical positioning system data sets.
Abstract:
Apparatus for generating an organ timing signal relating to an inspected organ within the body of a patient, including a medical positioning system, and a processor coupled with the medical positioning system, the medical positioning system including at least one reference electromagnetic transducer placed at a reference location, at least one inner electromagnetic transducer attached to a surgical tool inserted in a blood vessel in the vicinity of the inspected organ, and a medical positioning system processor coupled with the reference electromagnetic transducer and the inner electromagnetic transducer, the medical positioning system processor determining the three-dimensional position of the inner electromagnetic transducer, by processing transmitted electromagnetic signals transmitted from one of the reference electromagnetic transducer and the inner electromagnetic transducer with detected electromagnetic signals detected by the other of the reference electromagnetic transducer and the inner electromagnetic transducer, the medical positioning system processor further generating medical positioning system data sets, each of the medical positioning system data sets including a collection of three-dimensional position coordinate readings demonstrating the motion trajectory of the surgical tool over time, the processor generating the organ timing signal from the medical positioning system data sets by detecting and identifying periodic motion frequencies in the medical positioning system data sets, and filtering the periodic motion frequencies from the medical positioning system data sets.
Abstract:
A method for registering a three dimensional (3D) coordinates system with a Medical Positioning System (MPS) coordinate system and with a two dimensional (2D) coordinate system, includes acquiring at least one 2D image of a volume of interest, the volume of interest including at least one tubular organ within the body of a patient. The 2D image is associated with the 2D coordinate system, and a plurality of MPS points is acquired, within the at least one tubular organ. The MPS points are associated with the MPS coordinate system, the MPS coordinate system being registered with the 2D coordinate system. A 3D image model is extracted of the at least one tubular organ form a pre-acquired 3D image of the volume of interest. A volumetric model of the at least one tubular organ from the 2D image is estimated and from the acquired MPS points, the 3D coordinate system is registered with the MPS coordinate system and with the 2D coordinate system by matching the extracted 3D image model and the estimated volumetric model of the at least one tubular organ.
Abstract:
A method for registering a three dimensional (3D) coordinates system with a Medical Positioning System (MPS) coordinate system and with a two dimensional (2D) coordinate system, includes acquiring at least one 2D image of a volume of interest, the volume of interest including at least one tubular organ within the body of a patient. The 2D image is associated with the 2D coordinate system, and a plurality of MPS points is acquired, within the at least one tubular organ. The MPS points are associated with the MPS coordinate system, the MPS coordinate system being registered with the 2D coordinate system. A 3D image model is extracted of the at least one tubular organ form a pre-acquired 3D image of the volume of interest. A volumetric model of the at least one tubular organ from the 2D image is estimated and from the acquired MPS points, the 3D coordinate system is registered with the MPS coordinate system and with the 2D coordinate system by matching the extracted 3D image model and the estimated volumetric model of the at least one tubular organ.
Abstract:
Method for registering a three dimensional (3D) pre acquired image coordinates system with a Medical Positioning System (MPS) coordinate system and a two dimensional (2D) image coordinate system, the method comprising acquiring a 2D image of a volume of interest, the volume including an organ, the 2D image being associated with the 2D coordinate system, acquiring MPS points within the organ, the MPS points being associated with the MPS coordinate system, the MPS coordinate system being registered with the 2D coordinate system, extracting a 3D image model of the organ from a pre acquired 3D image of the volume of interest, estimating a volumetric model of the organ from the acquired MPS points, and registering the 3D coordinate system with the MPS coordinate system by matching the extracted 3D image model and the estimated volumetric model of the organ.