Abstract:
An analyte sensor apparatus for detecting an analyte in a target environment includes a plurality of biotransducers and a controller. The plurality of biotransducers are configured to provide a baseline signal, one or more analyte signals, and at least one error condition signal. The plurality of biotransducers at least one reference biotransducer, one or more working biotransducers, and at least one working as reference biotransducer. The controller is operatively coupled to the plurality of biotransducers and is configured to receive the baseline signal, the one or more analyte signals, and the error correction signal. The controller is further configured to determine and/or output one or more adjusted analyte levels using the baseline signal, the one or more analyte signals, and the error correction signal.
Abstract:
An electrochemical sensor may include a common reference electrode, at least one counter electrode, and a work electrode platform including a plurality of respective work electrodes. Each respective work electrode of the plurality of respective work electrodes may be electrically coupled to the common reference electrode and include a respective reagent substrate configured to react with a respective analyte to produce a signal indicative of a concentration of the respective analyte.
Abstract:
A hybrid integrated circuit in a wafer level package for an implantable medical device includes one or more passive component windings formed, at least in part, along one or more routing layers of the package. The windings may be primary and secondary windings of a transformer, wherein all or part of a magnetic core thereof is embedded in a component layer of the wafer level package. If the core includes a part bonded to a surface of the package, that part of the core may be E-shaped with legs extending into the routing layers, and, in some cases, through the routing layers. Routing layers may be formed on both sides of the component layer to accommodate the transformer windings, in some instances.
Abstract:
An analyte sensor apparatus for detecting an analyte in a target environment includes a plurality of electrodes and a controller. The plurality of electrodes may be configured to provide a plurality of electrode signals based on a target environment. The plurality of electrodes may include one or more working electrodes, a first reference electrode, and a second reference electrode. The one or more working electrodes may be configured to provide an analyte signal based on a presence of an analyte in the target environment. The first reference electrode may be configured to provide a first baseline signal of the target environment. The second reference electrode may include a different type of electrode than the first reference electrode. The second reference electrode may be configured to provide a second baseline signal of the target environment. The controller may be operatively coupled to the plurality of electrodes.
Abstract:
An electrochemical sensor may include a common reference electrode, at least one counter electrode, and a work electrode platform including a plurality of respective work electrodes. Each respective work electrode of the plurality of respective work electrodes may be electrically coupled to the common reference electrode and include a respective reagent substrate configured to react with a respective analyte to produce a signal indicative of a concentration of the respective analyte.
Abstract:
A biocompatible medical device may include an electrochemical sensor including a common reference electrode; at least one counter electrode; and a work electrode platform comprising a plurality of respective work electrodes, each respective work electrode electrically coupled to the common reference electrode and comprising a respective reagent substrate configured to react with a respective analyte to produce a respective signal indicative of a concentration of the respective analyte; and processing circuitry operatively coupled to the electrochemical sensor, and configured to receive from the electrochemical sensor a plurality of signals from the plurality of respective work electrodes; identify the respective signal corresponding to a respective selected work electrode; and process the identified signal to determine the concentration of the respective analyte associated with the respective selected work electrode.
Abstract:
The present disclosure provides methods and techniques associated with a planar transformer for an apparatus. The planar transformers include a substrate carrying electronic components and a continuous core that is formed by distributing the encapsulant material uniformly around the substrate unit to define a consistent cross-sectional area for the magnetic path. The electronic components include primary windings and secondary windings associated with the transformer. In some embodiments, the encapsulant material is molded to seals air gaps to the substrate unit.
Abstract:
Techniques are disclosed for measuring an analyte in a biological system. A system may include a medical device with an electrochemical sensor configured to sense the concentration of a plurality of analytes present in a biological system. Processing circuitry of the system may retrieve, identify, and process a respective signal from a respective work electrode to determine the concentration of a respective analyte. The system may further include an implantable medical device configured to sense a cardiac electrogram (EGM). In some examples, the system may be configured to determine one or more patient-specific relationships between the respective signals of the electrochemical sensor and the cardiac EGM during a first period of time. Based on the patient-specific relationships, the system may estimate concentrations of the one or more analytes corresponding to the respective signals based on the cardiac EGM of the patient collected over a second period of time.
Abstract:
A hybrid integrated circuit in a wafer level package for an implantable medical device includes one or more passive component windings formed, at least in part, along one or more routing layers of the package. The windings may be primary and secondary windings of a transformer, wherein all or part of a magnetic core thereof is embedded in a component layer of the wafer level package. If the core includes a part bonded to a surface of the package, that part of the core may be E-shaped with legs extending into the routing layers, and, in some cases, through the routing layers. Routing layers may be formed on both sides of the component layer to accommodate the transformer windings, in some instances.
Abstract:
Systems, apparatus and methods configured to facilitate pairing an implantable device with a remote device using a near field communication (NFC) device attached to the implantable device are presented. In an aspect, an implantable device assembly includes an implantable device and an NFC component externally attached to the implantable device. The NFC component is configured to transmit identification information associated with the implantable device to a reader device using NFC protocol. Transmission is in response to a received request signal.