摘要:
A method for reducing dark current in image sensors comprises providing a backside illuminated image sensor wafer, depositing a first passivation layer on a backside of the backside illuminated image sensor wafer, depositing a plasma enhanced passivation layer on the first passivation layer and depositing a second passivation layer on the plasma enhanced passivation layer.
摘要:
A method for reducing dark current in image sensors comprises providing a backside illuminated image sensor wafer, depositing a first passivation layer on a backside of the backside illuminated image sensor wafer, depositing a plasma enhanced passivation layer on the first passivation layer and depositing a second passivation layer on the plasma enhanced passivation layer.
摘要:
An integrated circuit device and a process for making the integrated circuit device. The integrated circuit device including a substrate having a trench formed therein, a first layer of isolation material occupying the trench, a second layer of isolation material formed over the first layer of isolation material, an epitaxially-grown silicon layer on the substrate and horizontally adjacent the second layer of isolation material, and a gate structure formed on the epitaxially-grown silicon, the gate structure defining a channel.
摘要:
An integrated circuit device and a process for making the integrated circuit device. The integrated circuit device including a substrate having a trench formed therein, a first layer of isolation material occupying the trench, a second layer of isolation material formed over the first layer of isolation material, an epitaxially-grown silicon layer on the substrate and horizontally adjacent the second layer of isolation material, and a gate structure formed on the epitaxially-grown silicon, the gate structure defining a channel.
摘要:
An improved reflectivity optical grid for image sensors. In an embodiment, a backside illuminated CIS device includes a semiconductor substrate having a pixel array area comprising a plurality of photosensors formed on a front side surface of the semiconductor substrate, each of the photosensors forming a pixel in the pixel array area; an optical grid material disposed over a backside surface of the semiconductor substrate, the optical grid material patterned to form an optical grid that bounds each of the pixels in the pixel array area and extending above the semiconductor substrate, the optical grid having sidewalls and a top portion; and a highly reflective coating formed over the optical grid, comprising a pure metal coating of a metal that is at least 99% pure, and a high-k dielectric coating over the pure metal coating that has a refractive index of greater than about 2.0. Methods are also disclosed.
摘要:
A metal gate stack having a TiAlN blocking/wetting layer, and methods of manufacturing the same, are disclosed. In an example, an integrated circuit device includes a semiconductor substrate and a gate stack disposed over the semiconductor substrate. The gate stack includes a gate dielectric layer disposed over the semiconductor substrate; a work function layer disposed over the gate dielectric layer; a multi-function wetting/blocking layer disposed over the work function layer, wherein the multi-function wetting/blocking layer is a titanium aluminum nitride layer; and a conductive layer disposed over the multi-function wetting/blocking layer.
摘要:
An image sensor includes a substrate having opposite first and second sides, a multilayer structure on the first side of the substrate, and a photo-sensitive element on the second side of the substrate. The photo-sensitive element is configured to receive light that is incident upon the first side and transmitted through the multilayer structure and the substrate. The multilayer structure includes first and second light transmitting layers. The first light transmitting layer is sandwiched between the substrate and the second light transmitting layer. The first light transmitting layer has a refractive index that is from 60% to 90% of a refractive index of the substrate. The second light transmitting layer has a refractive index that is lower than the refractive index of the first light transmitting layer and is from 40% to 70% of the refractive index of the substrate.
摘要:
A method for spin-on wafer cleaning. The method comprises controlling spin speed and vertical water jet pressure. The vertical jet pressure and the spin speed are substantially maintained in inverse proportion. Wafer spin speed is between 50 to 1200 rpm. Vertical wafer jet pressure is between 0.05 to 100 KPa.
摘要:
Methods and apparatus for a backside illuminated (BSI) image sensor device are disclosed. A BSI sensor device is formed on a substrate comprising a photosensitive diode. The substrate may be thinned at the backside, then a B doped Epi-Si(Ge) layer may be formed on the backside surface of the substrate. Additional layers may be formed on the B doped Epi-Si(Ge) layer, such as a metal shield layer, a dielectric layer, a micro-lens, and a color filter.
摘要:
A device includes semiconductor substrate having a front side and a backside. A polysilicon layer is disposed on the backside of the semiconductor substrate. The polysilicon layer includes a portion doped with a p-type impurity. A dielectric layer is disposed on the backside of the semiconductor substrate, wherein the polysilicon layer is between the semiconductor substrate and the polysilicon layer.