Abstract:
A device for making electrical connection to a reciprocating element, such as to a voice coil of an actuator. An electrical flow path utilizing the helical centering springs as a primary element in conducting current ensures reliable current flow to a reciprocating element and avoids high-speed flexing of brittle wires. Hard-wired connections are utilized only between stationary elements. A second double-coil actuator embodiment employs a coaxial, substantially co-extensive pair of springs as the input and return current flow paths for each actuator.
Abstract:
Novel binding assay techniques have been developed which improve accuracy and sensitivity via accounting for interfering factors. They rely on use, in a simultaneous incubation, of two or more different labels, some of which are used primarily to detect analyte, and others to detect interfering substances originating in the sample. The mathematical relationships between the labels allow corrections that lead to more accurate and sensitive determination of the presence and concentration of the analyte.
Abstract:
The present invention provides primers and probes to be used in a method of enhancing hybridization of a probe to a target nucleotide sequence when the target sequence is capable of forming intramolecular secondary structures that interfere with hybridization of the probe to the target sequence. In particular, the invention includes a primer for amplifying a target nucleotide sequence, wherein at least a portion of the target nucleotide sequence can form an intramolecular secondary structure. The primer of the invention includes a primer nucleotide sequence complementary to a portion of the target nucleotide sequence that does not form a secondary structure, and a blocking sequence substantially complementary to at least a portion of the secondary structure-forming region of the amplified target nucleotide sequence, wherein the blocking sequence hybridizes to a portion of the secondary structure-forming region of the amplified target nucleotide sequence and blocks the formation of the secondary structure.
Abstract:
Provided are planar waveguide (“PWG”) detection chips that are used to perform multiplex PCR and kinetic PCR assays with a single fluorescent dye. The PWG detection chips are housed in PWG detection chambers that house at least one PWG chip. The PWG detection chambers may be in a single chamber or a dual chamber configuration. Also provided are methods for analyzing amplification products using the PWG detection chambers of the present invention.
Abstract:
The present invention provides methods, compositions and systems for the specific and selective detection of multiple single nucleotide polymorphisms (SNPs) from genomic DNA. Importantly, the inventive systems and methods eliminate the need for costly, time- and labor-intensive gene amplification that is generally carried out prior to SNP detection. Also provided are kits useful to perform the inventive methods.
Abstract:
A vibration control apparatus (20) and method for a calender (18) for controlling vibration between two or more rolls (ex. 22, 24) which controls vibration induced thickness variations in a medium (27) exiting from the nip. The apparatus (20) includes a frame (19), a first and second rolls (22, 24) mounted relative to the frame (19), and a force generator (32), such as an electromechanical active actuator, servo-hydraulic actuator, controllable semi-active damper, Active Vibration Absorber (AVA), or Adaptive Tuned Vibration Absorber (ATVA), provides cancelling forces to control vibration between the first and second roll (22, 24) thereby, controlling such vibration induced thickness variations in the medium (27). Preferably, the apparatus (20) includes at least one sensor (ex. 42, 42', 42", 42'") for providing a signal representative of a vibration condition of at least one of the first or second roll (22, 24), and preferably both, and a digital controller (50) for processing the signal representative of said vibration condition preferably according to a feed-forward-type control and providing a control signal to a force generator (32). Vertical and/or lateral vibration of the rolls (22, 24) may controlled simultaneously. Likewise, fundamental vibrational frequencies and their harmonics may be controlled individually, or in combination.
Abstract:
An ultrasonic wave generator comprising a semiconductor superlattice with a periodic variation in its space charge and a far infrared laser for applying a transient electric field to the superlattice transverse to the direction of its periodic variation. The ultrasonic wave produced has a wavelength of the period of the superlattice which can result in 100 gigahertz ultrasonic waves. Structure is included for guiding these waves into an acoustic system.