摘要:
Lateral epitaxial overgrowth of non-polar III-nitride seed layers reduces threading dislocations in the non-polar III-nitride thin films. First, a thin patterned dielectric mask is applied to the seed layer. Second, a selective epitaxial regrowth is performed to achieve a lateral overgrowth based on the patterned mask. Upon regrowth, the non-polar III-nitride films initially grow vertically through openings in the dielectric mask before laterally overgrowing the mask in directions perpendicular to the vertical growth direction. Threading dislocations are reduced in the overgrown regions by (1) the mask blocking the propagation of dislocations vertically into the growing film and (2) the bending of dislocations through the transition from vertical to lateral growth.
摘要:
Highly planar non-polar GaN films are grown by hydride vapor phase epitaxy (HVPE). The resulting films are suitable for subsequent device regrowth by a variety of growth techniques.
摘要:
Lateral epitaxial overgrowth of non-polar III-nitride seed layers reduces threading dislocations in the non-polar III-nitride thin films. First, a thin patterned dielectric mask is applied to the seed layer. Second, a selective epitaxial regrowth is performed to achieve a lateral overgrowth based on the patterned mask. Upon regrowth, the non-polar III-nitride films initially grow vertically through openings in the dielectric mask before laterally overgrowing the mask in directions perpendicular to the vertical growth direction. Threading dislocations are reduced in the overgrown regions by (1) the mask blocking the propagation of dislocations vertically into the growing film and (2) the bending of dislocations through the transition from vertical to lateral growth.
摘要:
Growth methods for planar, non-polar, Group-III nitride films are described. The resulting films are suitable for subsequent device regrowth by a variety of growth techniques.
摘要:
Growth methods for planar, non-polar, Group-III nitride films are described. The resulting films are suitable for subsequent device regrowth by a variety of growth techniques.
摘要:
A method for forming non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices. Non-polar (11 20) a-plane GaN layers are grown on an r-plane (1 102) sapphire substrate using MOCVD. These non-polar (11 20) a-plane GaN layers comprise templates for producing non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices.
摘要:
Lateral epitaxial overgrowth of non-polar III-nitride seed layers reduces threading dislocations in the non-polar III-nitride thin films. First, a thin patterned dielectric mask is applied to the seed layer. Second, a selective epitaxial regrowth is performed to achieve a lateral overgrowth based on the patterned mask. Upon regrowth, the non-polar III-nitride films initially grow vertically through openings in the dielectric mask before laterally overgrowing the mask in directions perpendicular to the vertical growth direction. Threading dislocations are reduced in the overgrown regions by (1) the mask blocking the propagation of dislocations vertically into the growing film and (2) the bending of dislocations through the transition from vertical to lateral growth.