摘要:
Light emitting diodes such as those formed from gallium nitride based semiconductors are provided with electrode and pad structures which facilitate current spreading. The LED may be formed as a die with a lower contact surface and a mesa projecting upwardly from the lower contact surface. An electrode on the lower contact surface may be in the form of a ring substantially encircling the mesa. In other arrangements, the pad and/or electrode on the lower contact surface is disposed in an indentation on one edge of the mesa whereas the pad on the top of the mesa is disposed adjacent the opposite edge of the mesa.
摘要:
A method for separating a semiconductor wafer into several thousand devices or dies by laser ablation. Semiconductor wafers are initially pre-processed to create multiple devices, such as blue LEDs, on the wafers. The wafers are then mounted with tape coated with a generally high level adhesive. The mounted wafer is then placed on a vacuum chuck (which is itself positioned on a computer controlled positioning table) to hold it in place during the cutting process. The cutting surface is then covered with a protective layer to prevent contamination from the effluent resulting from the actual cutting process. A laser beam is generated and passed through optical elements and masks to create a pattern, such as a line or multiple lines. The patterned laser projection is directed at the wafer at a substantially normal angle and applied to the wafer until at least a partial cut is achieved through it. A mechanical separation process completes the separation when only a partial cut is achieved by the patterned laser projection. The dies are then transferred to a grip ring for further processing.
摘要:
A contact for n-type III-V semiconductor such as GaN and related nitride-based semiconductors is formed by depositing Al,Ti,Pt and Au in that order on the n-type semiconductor and annealing the resulting stack, desirably at about 400-600° C. for about 1-10 minutes. The resulting contact provides a low-resistance, ohmic contact to the semiconductor and excellent bonding to gold leads.
摘要:
A method for separating a semiconductor wafer into several thousand devices or dies by laser ablation. Semiconductor wafers are initially pre-processed to create multiple devices, such as blue LEDs, on the wafers. The wafers are then mounted with tape coated with a generally high level adhesive. The mounted wafer is then placed on a vacuum chuck (which is itself positioned on a computer controlled positioning table) to hold it in place during the cutting process. The cutting surface is then covered with a protective layer to prevent contamination from the effluent resulting from the actual cutting process. A laser beam is generated and passed through optical elements and masks to create a pattern, such as a line or multiple lines. The patterned laser projection is directed at the wafer at a substantially normal angle and applied to the wafer until at least a partial cut is achieved through it. A mechanical separation process completes the separation when only a partial cut is achieved by the patterned laser projection. The dies are then transferred to a grip ring for further processing.
摘要:
In a method for fabricating a flip-chip light emitting diode device, epitaxial layers are deposited on a sapphire growth substrate to produce an epitaxial wafer. A plurality of light emitting diode devices are fabricated on the epitaxial wafer. The epitaxial wafer is diced to generate a device die. The device die is flip chip bonded to a mount. The flip chip bonding includes securing the device die to the mount by bonding at least one electrode of the device die to at least one bonding pad of the mount. Subsequent to the flip chip bonding, the growth substrate of the device die is removed via the application of laser light.
摘要:
A light emitting device includes a stack of semiconductor layers defining a light emitting pn junction and a dielectric layer disposed over the stack of semiconductor layers. The dielectric layer has a refractive index substantially matching a refractive index of the stack of semiconductor layers. The dielectric layer has a principal surface distal from the stack of semiconductor layers. The distal principal surface includes patterning, roughening, or texturing configured to promote extraction of light generated in the stack of semiconductor layers.
摘要:
A light-emitting microelectronic package includes a light-emitting diode (110) having a first region (114) of a first conductivity type, a second region (116) of a second conductivity type, and a light-emitting p-n junction (118) between the first and second regions. The light-emitting diode defines a lower contact surface (120) and a mesa (122) projecting upwardly from the lower contact surface. The first region (114) of a first conductivity type is disposed in the mesa (122) and defines a top surface of the mesa, and the second region (116) of a second conductivity type defines the lower contact surface that substantially surrounds the mesa (122). The mesa includes at least one sidewall (130) extending between the top surface (124) of the mesa and the lower contact surface (120), the at least one sidewall (130) having a roughened surface for optimizing light extraction from the package.
摘要:
Light emitting diodes are provided with electrode and pad structures that facilitate current spreading and heat sinking. A light emitting diode may be formed as a die with a stacked structure having a first region and a mesa projecting from a surface of the first region. A first electrode may substantially cover the mesa and have a plurality of pads disposed thereon maximizing a contact area in relation to the first electrode. A second electrode may be disposed as a trace on the surface of the first region, the trace having a spiral, segmented/interdigitated, loop or pattern. Optionally, the trace includes corner spikes projecting outwardly toward edges of the first electrode.
摘要:
A flip chip light emitting diode die (12) includes a light-transmissive substrate (20) and a plurality of semiconductor layers (22) are disposed on the light-transmissive substrate (20). The semiconductor layers (22) define a light-generating p/n junction. An electrode (30) is formed on the semiconductor layers (22) for flip-chip bonding the diode die (12) to an associated mount (14). The electrode (30) includes an optically transparent layer (42) formed of a substantially optically transparent material adjacent to the semiconductor layers (22) that makes ohmic contact therewith, and a reflective layer (44) adjacent to the optically transparent layer (42) and in electrically conductive communication therewith.
摘要:
An LED device (90) includes: an epitaxial structure (100) having a plurality of layers of semiconductor material and forming an active light-generating region (120) which generates light in response to electrical power being supplied to the LED device (90); and, a substrate (200) that is substantially transparent in a wavelength range corresponding to the light generated by the active light-generating region (120). The substrate has first and second opposing end faces (202, 206) and a plurality of side walls (210) extending therebetween, including a first side wall having a first portion thereof that defines a first surface (212, 214, 216, 218) which is not substantially normal to the first face (202) of the substrate (200). The epitaxial structure (100) is disposed on the first face (202) of the substrate (200).