摘要:
The purpose of the present invention is to provide a method for driving an actuator in which unnecessary deformation is suppressed.The present invention provides a method for driving an actuator, comprising the following steps (a) and (b): a step (a) of preparing the actuator, wherein the actuator comprises a first electrode, a piezoelectric layer composed of (Bi,Na,Ba)TiO3, and a second electrode, the piezoelectric layer is interposed between the first electrode and the second electrode, +X direction, +Y direction, and +Z direction denote [100] direction, [01-1] direction, and [011] direction, respectively, and the piezoelectric layer is preferentially oriented along the +Z direction; and a step (b) of applying a potential difference between the first electrode and the second electrode to drive the actuator.
摘要:
The purpose of the present invention is to provide a method for driving an actuator in which unnecessary deformation is suppressed.The present invention provides a method for driving an actuator, comprising the following steps (a) and (b): a step (a) of preparing the actuator, wherein the actuator comprises a first electrode, a piezoelectric layer composed of (Bi,Na,Ba)TiO3, and a second electrode, the piezoelectric layer is interposed between the first electrode and the second electrode, +X direction, +Y direction, and +Z direction denote [100] direction, [01-1] direction, and [011] direction, respectively, and the piezoelectric layer is preferentially oriented along the +Z direction; and a step (b) of applying a potential difference between the first electrode and the second electrode to drive the actuator.
摘要:
Provided is a relatively easy-to-fabricate piezoelectric power generating element capable of generating a large amount of electric power while comprising a bridge-type vibration beam that is resistant to damage from external vibration. This element comprises a support member, a strip-shaped vibration beam, a piezoelectric layer, and electrodes. The first and second ends of the vibration beam are fixed to the support member. The piezoelectric layer and the electrodes are provided on the surface of the vibration beam. The vibration beam extends in a plane when it is not vibrating. The vibration beam has a first portion that extends from the first end fixed to the support member, a second portion that extends from the second end fixed to the support member, and a third portion that connects the end of the first portion opposite to the first end and the end of the second portion opposite to the second end. The vibration beam has a shape such that, when viewed in a direction perpendicular to the plane, a first direction in which the first portion extends is a direction closer to the second end, and a second direction in which the second portion extends is a direction closer to the first end, the first and second directions each make an angle of more than 0° and less than 90° with respect to a straight line connecting the center of the first end and the center of the second end, and the third portion intersects once the straight line.
摘要:
Provided is a relatively easy-to-fabricate piezoelectric power generating element capable of generating a large amount of electric power while comprising a bridge-type vibration beam that is resistant to damage from external vibration. This element comprises a support member, a strip-shaped vibration beam, a piezoelectric layer, and electrodes. The first and second ends of the vibration beam are fixed to the support member. The piezoelectric layer and the electrodes are provided on the surface of the vibration beam. The vibration beam extends in a plane when it is not vibrating. The vibration beam has a first portion that extends from the first end fixed to the support member, a second portion that extends from the second end fixed to the support member, and a third portion that connects the end of the first portion opposite to the first end and the end of the second portion opposite to the second end. The vibration beam has a shape such that, when viewed in a direction perpendicular to the plane, a first direction in which the first portion extends is a direction closer to the second end, and a second direction in which the second portion extends is a direction closer to the first end, the first and second directions each make an angle of more than 0° and less than 90° with respect to a straight line connecting the center of the first end and the center of the second end, and the third portion intersects once the straight line.
摘要:
The purpose of the present invention is to provide a lead-free piezoelectric film including a lead-free ferroelectric material and having low dielectric loss and high piezoelectric performance comparable to that of PZT, and a method of manufacturing the lead-free piezoelectric film.The present invention is directed to a piezoelectric film comprising a NaxLa1-xNiO3-x layer with a (001) orientation and a (Na,Bi)TiO3—BaTiO3 layer with a (001) orientation, wherein x is not less than 0.01 and not more than 0.1, and the NaxLa1-xNiO3-x layer (0.01≦x≦0.1) and the (Na,Bi)TiO3—BaTiO3 layer are laminated.
摘要:
It is an object of the present invention to provide a lead-free piezoelectric film including a lead-free ferroelectric material and having low dielectric loss and high piezoelectric performance comparable to that of PZT, and a method of manufacturing the lead-free piezoelectric film.The present invention is directed to a piezoelectric film comprising a (NaxBiy)TiO0.5x+1.5y+2—BaTiO3 layer with a (111) orientation, where 0.30≦x≦0.46 and 0.51≦y≦0.62.
摘要:
The purpose of the present invention is to provide a lead-free piezoelectric film including a lead-free ferroelectric material and having low dielectric loss and high piezoelectric performance comparable to that of PZT, and a method of manufacturing the lead-free piezoelectric film.The present invention is directed to a piezoelectric film comprising a NaxLa1-xNiO3-x layer with a (001) orientation and a (Na,Bi)TiO3—BaTiO3 layer with a (001) orientation, wherein x is not less than 0.01 and not more than 0.1, and the NaxLa1-xNiO3-x layer (0.01≦x≦0.1) and the (Na,Bi)TiO3—BaTiO3 layer are laminated.
摘要:
It is an object of the present invention to provide a lead-free piezoelectric film including a lead-free ferroelectric material and having low dielectric loss and high piezoelectric performance comparable to that of PZT, and a method of manufacturing the lead-free piezoelectric film.The present invention is directed to a piezoelectric film comprising a (NaxBiy)TiO0.5x+1.5y+2−BaTiO3 layer with a (110) orientation, where 0.30≦x≦0. 46 and 0.51≦y≦0.62.
摘要:
The purpose of the present invention is to provide an angular velocity sensor capable of measuring an exact angular velocity, an ink jet head capable of producing an exact amount of ink, and a piezoelectric generating element capable of generating electric power due to positive piezoelectric effect.In the present invention, a piezoelectric film comprising a first electrode, a piezoelectric layer, and a second electrode is used. The first electrode comprises an electrode layer having a (001) orientation. The piezoelectric layer comprises a (NaxBiy)TiO0.5x+1.5y+2—BaTiO3 layer (0.30≦x≦0.46 and 0.51≦y≦0.62) having a (001) orientation.
摘要:
The present invention provides a non-lead piezoelectric film having high crystalline orientation, the low dielectric loss, the high polarization-disappear temperature, the high piezoelectric constant, and the high linearity between an applied electric field and an amount of displacement. The present invention is a piezoelectric film comprising: a NaxLa1-x+yNi1-yO3-x layer having only an (001) orientation and a (1-α) (Bi, Na, Ba) TiO3-αBiQO3 layer having only an (001) orientation. The (1-α) (Bi, Na, Ba) TiO3-αBiQO3 layer is formed on the NaxLa1-x+yNi1-yO3-x layer. The character of Q represents Fe, Co, Zn0.5Ti0.5, or Mg0.5Ti0.5 The character of x represents a value of not less than 0.01 and not more than 0.05. The character of y represents a value of not less than 0.05 and not more than 0.20. The character of α represents a value of not less than 0.20 and not more than 0.50.