摘要:
An integrated circuit chip has full trench dielectric isolation of each portion of the chip. Initially the chip substrate is of conventional thickness and has semiconductor devices formed in it. After etching trenches in the substrate and filling them with dielectric material, a heat sink cap is attached to the passivation layer on the substrate front side surface. The passivation layer is a CVD diamond film which provides both electrical insulation and thermal conductivity. The substrate backside surface is removed (by grinding and/or CMP) to expose the bottom portion of the trenches. This fully isolates each portion of the die and eliminates mechanical stresses at the trench bottoms. Thereafter drain or collector electrical contacts are provided on the substrate backside surface. In a flip chip version, frontside electrical contacts extend through the frontside passivation layer to the heat sink cap. In a surface mount version, vias are etched through the substrate, with surface mount posts formed on the vias, to contact the frontside electrical contacts and provide all electrical contacts on the substrate backside surface. The wafer is then scribed into die in both versions without need for further packaging.
摘要:
An integrated circuit chip has full trench dielectric isolation of each portion of the chip. Initially the chip substrate is of conventional thickness and has semiconductor devices formed in it. After etching trenches in the substrate and filling them with dielectric material, a heat sink cap is attached to the passivation layer on the substrate front side surface. The substrate backside surface is removed (by grinding or CMP) to expose the bottom portion of the trenches. This fully isolates each portion of the die and eliminates mechanical stresses at the trench bottoms. Thereafter drain or collector electrical contacts are provided on the substrate backside surface. In a flip chip version, frontside electrical contacts extend through the frontside passivation layer to the heat sink cap. In a surface mount version, vias are etched through the substrate, with surface mount posts formed on the vias, to contact the frontside electrical contacts and provide all electrical contacts on the substrate backside surface. The wafer is then scribed into die in both versions without need for further packaging.
摘要:
An integrated circuit chip has full trench dielectric isolation of each portion of the chip. Initially the chip substrate is of conventional thickness and has semiconductor devices formed in it. After etching trenches in the substrate and filling them with dielectric material, a heat sink cap is attached to the passivation layer on the substrate front side surface. The substrate backside surface is removed (by grinding or CMP) to expose the bottom portion of the trenches. This fully isolates each portion of the die and eliminates mechanical stresses at the trench bottoms. Thereafter drain or collector electrical contacts are provided on the substrate backside surface. In a flip chip version, frontside electrical contacts extend through the frontside passivation layer to the heat sink cap. In a surface mount version, vias are etched through the substrate, with surface mount posts formed on the vias, to contact the frontside electrical contacts and provide all electrical contacts on the substrate backside surface. The wafer is then scribed into die in both versions without need for further packaging.
摘要:
A trenched DMOS transistor has improved device performance and production yield. During fabrication the cell trench corners, i.e. the areas where two trenches intersect, are covered on the principal surface of the integrated circuit substrate with a blocking photoresist layer during the source region implant step in order to prevent (block) a channel from forming in these corner areas. Punch-through is thereby eliminated and reliability improved, while source/drain on-resistance is only slightly increased. The blocking of the trench corners creates a cutout structure at each trench corner, whereby the source region does not extend to the trench corner, but instead the underlying oppositely-doped body region extends to the trench corner.
摘要:
A trenched DMOS transistor is fabricated using seven masking steps. One masking step defines both the P+ deep body regions and the active portions of the transistor which are masked using a LOCOS process. A second masking step defines the insulating oxide in the termination region. The insulating (oxide) layer in the termination region is thus thicker than in the active region of the transistor, thereby improving process control and reducing substrate contamination during processing. Additionally, the thicker field oxide in the termination region improves electric field distribution so that avalanche breakdown occurs in the cell (active) region rather than in the termination region, and thus breakdown voltage behavior is more stable and predictable.
摘要:
A trenched DMOS transistor is fabricated using seven masking steps. One masking step defines both the P+ deep body regions and the active portions of the transistor which are masked using a LOCOS process. A second masking step defines the insulating oxide in the termination region. The insulating (oxide) layer in the termination region is thus thicker than in the active region of the transistor, thereby improving process control and reducing substrate contamination during processing. Additionally, the thicker field oxide in the termination region improves electric field distribution so that avalanche breakdown occurs in the cell (active) region rather than in the termination region, and thus breakdown voltage behavior is more stable and predictable.
摘要:
A trenched DMOS transistor is fabricated using six masking steps. One masking step defines both the P+ regions and the active portions of the transistor which are masked using a LOCOS process. The LOCOS process also eliminates the poly stringer problem present in prior art structures by reducing the oxide step height. A transistor termination structure includes several field rings, each set of adjacent field rings separated by an insulated trench, thus allowing the field rings to be spaced very close together. The field rings and trenches are fabricated in the same steps as are corresponding portions of the active transistor.
摘要:
A DMOS field effect transistor having its gate electrode located in a trench includes a lightly doped epitaxial layer overlying the usual epitaxial layer. The trench penetrates only part way through the upper epitaxial layer which is more lightly doped than is the underlying lower epitaxial layer. The lightly doped upper epitaxial layer reduces the electric field at the bottom of the trench, thus protecting the gate oxide from breakdown during high voltage operation. Advantageously the upper portion of the lightly doped upper epitaxial layer has little adverse effect on the transistor's on resistance.
摘要:
A DMOS field effect transistor having its gate electrode located in a trench includes a lightly doped epitaxial layer overlying the usual epitaxial layer. The trench penetrates only part way through the upper epitaxial layer which is more lightly doped than is the underlying lower epitaxial layer. The lightly doped upper epitaxial layer reduces the electric field at the bottom of the trench, thus protecting the gate oxide from breakdown during high voltage operation. Advantageously the upper portion of the lightly doped upper epitaxial layer has little adverse effect on the transistor's on resistance.
摘要:
A power MOSFET is created from a semiconductor body (2000 and 2001) having a main active area and a peripheral termination area. A first insulating layer (2002) of substantially uniform thickness lies over the active and termination areas. A main polycrystalline portion (2003A/2003B) lies over the first insulating layer largely above the active area. First and second peripheral polycrystalline segments (2003C1 and 2003C2) lie over the first insulating layer above the termination area.A gate electrode (2016) contacts the main polycrystalline portion. A source electrode (2015A/2015B) contacts the active area, the termination area, and the first polycrystalline segment. An optional additional metal portion (2019) contacts the second polycrystalline segment. The MOSFET is typically created by a five-mask process. A defreckle etch is performed subsequent to metal deposition and patterning to define the two peripheral polycrystalline segments.