摘要:
A method of fabricating a light receiving element includes depositing a material for one of a P-type semiconductor, an N--type semiconductor, and electrodes, while applying a reverse bias voltage and irradiating light of a desired wavelength longer than an absorption wavelength of the material. The deposition has a non-adiabatic flow of, at a portion where a local shape to enable generation of near field light is formed on a surface of the deposited material with the irradiation light, absorbing the irradiation light through a non-adiabatic process with the near field light, thereby generating electrons, and canceling generation of a local electric field based on the voltage, and a particle adsorbing flow of, at a portion where the shape is not formed, causing the portion where the local electric field is generated to sequentially adsorb particles forming the material, and shifting to the non-adiabatic flow when the shape is formed.
摘要:
Provided is a compound semiconductor deposition method of adjusting the luminous wavelength of a compound semiconductor of a ternary or higher system in a nanometer order in depositing the compound semiconductor on a substrate. In the compound semiconductor deposition method of depositing a compound semiconductor of a ternary or higher system on a substrate, propagation light of a smaller energy than a desired ideal excitation energy for the compound semiconductor is irradiated onto the substrate 13 while depositing the compound semiconductor on the substrate 13, near-field light is generated based on the irradiated propagation light from fine particles of the compound semiconductor deposited on the substrate 13, new vibrational levels for the compound semiconductor are formed in multiple stages based on the generated near-field light, and a component in the compound semiconductor corresponding to the excitation energy is excited with the propagation light through a vibrational level, among the new vibrational levels, which has an excitation energy equal to or smaller than the energy of the propagation light is excited to desorb the component.
摘要:
Disclosed is a near-field photocatalyst using a ZnO (ZnO) nanowire. The photocatalyst is advantageous in that low-priced zinc is used instead of titanium, conventionally used as a photocatalyst to reduce expenses, and that it is possible to obtain overvoltage which is sufficient to generate hydrogen using an optical near field formed around an end of a ZnO nanowire without the application of additional external voltage, thus the use of a costly electrode, such as platinum, is avoided and a process is simplified.
摘要:
An optical-pickup slider is characterized in that a light-transmitting-property substrate is bonded to a surface of a layer having a tapered through hole, on which surface a larger opening of the tapered through hole exists. Thereby, it is possible to prevent the layer having an aperture from being destroyed. A method of manufacturing the optical-pickup slider comprises the steps of a) making a tapered through hole in a layer layered on a first substrate and having a thickness smaller than that of the first substrate; and, after bonding a light-transmitting-property substrate to a surface of the layer, removing the first substrate so as to expose an aperture at a tip of the tapered through hole.
摘要:
The broad range measurement exploiting the usual propagated light and the high resolution measurement mode exploiting near-field light are to be accomplished with a sole as-assembled optical probe. To this end, light radiated through an optical probe 13 having a light shielding coating layer 33 formed for defining a light radiating aperture D or light radiated at a core 31 of the optical probe 13 is propagated, as the optical probe 13 is moved in a direction towards and away from a surface for measurement 2a. The core of the optical probe is coated with a light shielding coating layer 33. In this manner, a spot of propagated light propagated through the core 31 or a spot of near-field light seeping from the light radiating aperture D is formed on the surface for measurement 2a, and light derived from the spot of light is detected.
摘要:
An optical detection device image is disclosed that allows fast measurements using near-field light at high resolution and high efficiency but without necessity of position alignment of an optical fiber probe. The optical detection device includes an optical fiber probe having a core for propagating light with an optical probe being formed at a front end of the core; a movement control unit to move the optical fiber probe to approach or depart from a sample; and a detection unit to detect light from the sample surface, wherein on the front end surface of the core of the optical probe, there are a first exit section on a peripheral side for emitting propagating light and a second exit section for seeping out the near-field light, the first exit section and the second exit section are formed in a concentric manner, and the tilt angle of the first exit section is different from the tilt angle of the second exit section.
摘要:
An optical-pickup slider is characterized in that a light-transmitting-property substrate is bonded to a surface of a layer having a tapered through hole, on which surface a larger opening of the tapered through hole exists. Thereby, it is possible to prevent the layer having an aperture from being destroyed. A method of manufacturing the optical-pickup slider comprises the steps of a) making a tapered through hole in a layer layered on a first substrate and having a thickness smaller than that of the first substrate; and, after bonding a light-transmitting-property substrate to a surface of the layer, removing the first substrate so as to expose an aperture at a tip of the tapered through hole.
摘要:
An optical-pickup slider is characterized in that a light-transmitting-property substrate is bonded to a surface of a layer having a tapered through hole, on which surface a larger opening of the tapered through hole exists. Thereby, it is possible to prevent the layer having an aperture from being destroyed. A method of manufacturing the optical-pickup slider comprises the steps of a) making a tapered through hole in a layer layered on a first substrate and having a thickness smaller than that of the first substrate; and, after bonding a light-transmitting-property substrate to a surface of the layer, removing the first substrate so as to expose an aperture at a tip of the tapered through hole.
摘要:
An optical detection device image is disclosed that allows fast measurements using near-field light at high resolution and high efficiency but without necessity of position alignment of an optical fiber probe. The optical detection device includes an optical fiber probe having a core for propagating light with an optical probe being formed at a front end of the core; a movement control unit to move the optical fiber probe to approach or depart from a sample; and a detection unit to detect light from the sample surface, wherein on the front end surface of the core of the optical probe, there are a first exit section on a peripheral side for emitting propagating light and a second exit section for seeping out the near-field light, the first exit section and the second exit section are formed in a concentric manner, and the tilt angle of the first exit section is different from the tilt angle of the second exit section.
摘要:
The broad range measurement exploiting the usual propagated light and the high resolution measurement mode exploiting near-field light are to be accomplished with a sole as-assembled optical probe. To this end, light radiated through an optical probe 13 having a light shielding coating layer 33 formed for defining a light radiating aperture D or light radiated at a core 31 of the optical probe 13 is propagated, as the optical probe 13 is moved in a direction towards and away from a surface for measurement 2a. The core of the optical probe is coated with a light shielding coating layer 33. In this manner, a spot of propagated light propagated through the core 31 or a spot of near-field light seeping from the light radiating aperture D is formed on the surface for measurement 2a, and light derived from the spot of light is detected.