Abstract:
A wire grid polarizer (WGP) can include a heat-dissipation layer. The heat-dissipation layer can enable the WGP to be able to endure high temperatures. The heat-dissipation layer can be located (a) over an array of wires and farther from a transparent substrate than the array of wires; or (b) between the array of wires and the transparent substrate. The heat-dissipation layer can be a continuous layer. The heat-dissipation layer can have a high electrical resistivity and a high coefficient of thermal conductivity.
Abstract:
A wire grid polarizer (WGP) can have a conformal-coating to protect the WGP from oxidation and/or corrosion. The conformal-coating can include a barrier layer with at least one: of aluminum oxide, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, hafnium oxide, and zirconium oxide. A method of making a WGP can include applying the barrier layer over ribs of a WGP by vapor deposition.
Abstract:
A wire grid polarizer and method of making a wire grid polarizer can protect delicate wires of the wire grid polarizer from damage. The wire grid polarizer can include a protective-layer located on an array of wires. The array of wires can further be protected by a chemical coating on an inside surface of the air-filled channels, closed ends of the air-filled channels, damaged wires of the array of wires in a line parallel to an edge of the wire grid polarizer, or combinations thereof. The method can include (i) providing the wire grid polarizer, (ii) applying the protective-layer, by physical vapor deposition or chemical vapor deposition but excluding atomic layer deposition, onto the array of wires, (iii) cutting the wire grid polarizer wafer into multiple wire grid polarizer parts, then (iv) protecting the array of wires.
Abstract:
Wire grid polarizer (WGP) performance can be improved by use of certain water-soluble materials. Such water-soluble materials can be protected by a conformal coating, which can be applied by an anhydrous method, such as vapor deposition for example.
Abstract:
A wire grid polarizer (WGP) can have a conformal-coating to protect the WGP from at least one of the following: corrosion, dust, and damage due to tensile forces in a liquid on the WGP. The conformal-coating can include a silane conformal-coating with chemical formula (1), chemical formula (2), or combinations thereof: A method of applying a conformal-coating over a WGP can include exposing the WGP to Si(R1)d(R2)e(R3)g.In the above WGP and method, X can be a bond to the ribs; each R1 can be a hydrophobic group; each R3, if any, can be any chemical element or group; d can be 1, 2, or 3, e can be 1, 2, or 3, g can be 0, 1, or 2, and d+e+g=4; R2 can be a silane-reactive-group; and each R6 can be an alkyl group, an aryl group, or combinations thereof.
Abstract translation:在上述WGP和方法中,X可以与肋骨结合; 每个R1可以是疏水基团; 每个R3(如果有的话)可以是任何化学元素或基团; d可以是1,2或3,e可以是1,2或3,g可以是0,1或2,d + e + g = 4; R2可以是硅烷反应性基团; 并且每个R 6可以是烷基,芳基或其组合。
Abstract:
A wire grid polarizer (WGP) can have a phosphonate conformal-coating to protect the WGP from at least one of the following: corrosion, dust, and damage due to tensile forces in a liquid on the WGP. The conformal-coating can include a chemical: where R1 can include a hydrophobic group, Z can include a bond to the ribs, and R5 can be any suitable chemical element or group. A method of applying a phosphonate conformal-coating over a WGP can include exposing the WGP to (R1)iPO(R4)j(R5)k, where: i is 1 or 2, j is 1 or 2, k is 0 or 1, and i+j+k=3; each R1 can independently include a hydrophobic group; R4 can include a phosphonate-reactive-group; each R6 can independently include an alkyl group, an aryl group, or combinations thereof; and each R5, if any, can independently be any suitable chemical element or group.
Abstract:
A wire grid polarizer (WGP) can have a conformal-coating to protect the WGP from at least one of the following: corrosion, dust, and damage due to tensile forces in a liquid on the WGP. The conformal-coating can include a silane conformal-coating with chemical formula (1), chemical formula (2), or combinations thereof: A method of applying a conformal-coating over a WGP can include exposing the WGP to Si(R1)d(R2)e(R3)g. In the above WGP and method, X can be a bond to the ribs; each R1 can be a hydrophobic group; each R3, if any, can be any chemical element or group; d can be 1, 2, or 3, e can be 1, 2, or 3, g can be 0, 1, or 2, and d+e+g=4; R2 can be a silane-reactive-group; and each R6 can be an alkyl group, an aryl group, or combinations thereof.
Abstract:
A wire grid polarizer (WGP) can have a phosphonate conformal-coating to protect the WGP from at least one of the following: corrosion, dust, and damage due to tensile forces in a liquid on the WGP. The conformal-coating can include a chemical: where R1 can include a hydrophobic group, Z can include a bond to the ribs, and R5 can be any suitable chemical element or group.A method of applying a phosphonate conformal-coating over a WGP can include exposing the WGP to (R1)iPO(R4)j(R5)k, where: i is 1 or 2, j is 1 or 2, k is 0 or 1, and i+j+k=3; each R1 can independently include a hydrophobic group; R4 can include a phosphonate-reactive-group; each R6 can independently include an alkyl group, an aryl group, or combinations thereof; and each R5, if any, can independently be any suitable chemical element or group.
Abstract:
A wire grid polarizer (WGP) can have a phosphonate conformal-coating to protect the WGP from at least one of the following: corrosion, dust, and damage due to tensile forces in a liquid on the WGP. The conformal-coating can include a chemical: where R1 can include a hydrophobic group, Z can be a bond to the ribs, and R5 can be any suitable chemical element or group. A method of applying a phosphonate conformal-coating over a WGP can include exposing the WGP to (R1)iPO(R4)j(R5)k, where: i is 1 or 2, j is 1 or 2, k is 0 or 1, and i+j+k=3; each R1 can independently be a hydrophobic group; R4 can be a phosphonate-reactive-group; each R6 can independently be an alkyl group, an aryl group, or combinations thereof; and each R5, if any, can independently be any suitable chemical element or group.
Abstract:
A wire grid polarizer (WGP) can include a heat-dissipation layer. The heat-dissipation layer can enable the WGP to be able to endure high temperatures. The heat-dissipation layer can be located (a) over an array of wires and farther from a transparent substrate than the array of wires; or (b) between the array of wires and the transparent substrate. The heat-dissipation layer can be a continuous layer. The heat-dissipation layer can have a high electrical resistivity and a high coefficient of thermal conductivity.