摘要:
The present invention can give a joining structure using metal nanoparticles to join the same types or different types of metal where when one surface metal is Al based, the parts are joined through a joining layer containing Ni nanoparticles, whereby a good joining strength is obtained. Further, by using two joining layers (6, 8) including metal nanoparticles to sandwich metal foil (7) so as to form a joining layer and joining the same type or different types of surface metals (3-4) through this joining layer, it is possible to ease the thermal stress due to the difference in amounts of thermal expansion of joined members which have two surface metals.
摘要:
The present invention provides a conductive bonded assembly utilizing particles of Ni or an Ni alloy as conductive particles so as to enable firing under non-pressing conditions and further realize an excellent bonding strength, electron migration characteristic, and ion migration characteristic. The conductive bonded assembly of the present invention is a conductive bonded assembly of an electronic component which has a first bondable member (for example, electrode material), a second bondable member (for example, a semiconductor device on an Si or SiC substrate), and a conductive bonding layer bonding these bondable members together, where the bonding layer is an Ni sintered body formed by a sintered body of Ni particles which has a porosity of 30% or less, and, further, can be obtained by heating and sintering the Ni particles at the time of firing where the Ni sintered bonding layer is formed.
摘要:
A conductive joining material and conductive joined structure for joining two joining members by a joining layer using metal nanoparticles at the time of which even if there is a difference in the amounts of heat expansion due to a difference in linear thermal expansion coefficients between these two joining members and further use at a high temperature is sought, it is possible to adjust the amount of heat expansion of the joining layer to a suitable value between the two joining members to ease the thermal stress occurring at the joining layer and possible to sufficiently hold the joint strength between the two joining members are provided.A conductive joining material containing metal nanoparticles, microparticles of a conductive material, and a solvent, wherein the conductive material forming the microparticles has a linear thermal expansion coefficient smaller than the linear thermal expansion coefficient of the metal forming the nanoparticles and the microparticles of conductive material have an average particle size of 0.5 to 10 μm.