Abstract:
Certain embodiments include a cubic boron nitride (c-BN) device. The c-BN device includes a n/n+ Schottky diode and a n/p/n+ bipolar structure. The n/n+ Schottky diode and the /p/n+ bipolar structure are on a single-crystal diamond platform.
Abstract:
Using processes disclosed herein, materials and structures are created and used. For example, processes can include melting boron nitride or amorphous carbon into an undercooled state followed by quenching. Exemplary new materials disclosed herein can be ferromagnetic and/or harder than diamond. Materials disclosed herein may include dopants in concentrations exceeding thermodynamic solubility limits. A novel phase of solid carbon has structure different than diamond and graphite.
Abstract:
Using processes disclosed herein, materials and structures are created and used. For example, processes can include melting amorphous carbon doped with nitrogen and carbon-13 into an undercooled state followed by quenching. Materials disclosed herein may include dopants in concentrations exceeding thermodynamic solubility limits.
Abstract:
Using processes disclosed herein, materials and structures are created and used. For example, processes can include melting amorphous carbon doped with nitrogen and carbon-13 into an undercooled state followed by quenching. Materials disclosed herein may include dopants in concentrations exceeding thermodynamic solubility limits.
Abstract:
Using processes disclosed herein, materials and structures are created and used. For example, processes can include melting boron nitride or amorphous carbon into an undercooled state followed by quenching. Exemplary new materials disclosed herein can be ferromagnetic and/or harder than diamond. Materials disclosed herein may include dopants in concentrations exceeding thermodynamic solubility limits. A novel phase of solid carbon has structure different than diamond and graphite.
Abstract:
Using processes disclosed herein, materials and structures are created and used. For example, processes can include melting boron nitride or amorphous carbon into an undercooled state followed by quenching. Exemplary new materials disclosed herein can be ferromagnetic and/or harder than diamond. Materials disclosed herein may include dopants in concentrations exceeding thermodynamic solubility limits. A novel phase of solid carbon has structure different than diamond and graphite.
Abstract:
Using processes disclosed herein, materials and structures are created and used. For example, processes can include melting boron nitride or amorphous carbon into an undercooled state followed by quenching. Exemplary new materials disclosed herein can be ferromagnetic and/or harder than diamond. Materials disclosed herein may include dopants in concentrations exceeding thermodynamic solubility limits. A novel phase of solid carbon has structure different than diamond and graphite.
Abstract:
In various exemplary embodiments, the present disclosure provides a process for the conversion of certain polymers into diamond and diamond-like materials using laser pulse annealing. The process includes transforming the polymer to carbon, melting the carbon and quenching the carbon melt into to form Q-carbon, diamond, and/or graphene. The process can be applied to a polymer film such as a polytetrafluoroethylene (PTFE) tape. An object can be coated with the polymer film which can then be converted to Q-carbon, diamond, and/or graphene using laser pulse annealing. A process is also provided for making a three-dimensional object using a combination of, for example, 3D printing the polymer and converting each layer of polymer into Q-carbon, diamond and/or graphene.
Abstract:
Using processes disclosed herein, materials and structures are created and used. For example, processes can include melting boron nitride or amorphous carbon into an undercooled state followed by quenching. Exemplary new materials disclosed herein can be ferromagnetic and/or harder than diamond. Materials disclosed herein may include dopants in concentrations exceeding thermodynamic solubility limits. A novel phase of solid carbon has structure different than diamond and graphite.
Abstract:
Using processes disclosed herein, materials and structures are created and used. For example, processes can include melting boron nitride or amorphous carbon into an undercooled state followed by quenching. Exemplary new materials disclosed herein can be ferromagnetic and/or harder than diamond. Materials disclosed herein may include dopants in concentrations exceeding thermodynamic solubility limits. A novel phase of solid carbon has structure different than diamond and graphite.