摘要:
An underlying layer is composed of Co—Fe—B that is an amorphous magnetic material. Thus, the upper surface of the underlying layer can be taken as a lower shield layer-side reference position for obtaining a gap length (GL) between upper and lower shields, resulting in a narrower gap than before. In addition, since the underlying layer has an amorphous structure, the underlying layer does not adversely affect the crystalline orientation of individual layers to be formed thereon, and the surface of the underlying layer has good planarizability. Accordingly, PW50 (half-amplitude pulse width) and SN ratio can be improved more than before without causing a decrease in rate of change in resistance (Δ R/R) or the like, thereby achieving a structure suitable for increasing recording density.
摘要翻译:下层由作为非晶磁性材料的Co-Fe-B组成。 因此,可以将下层的上表面作为下屏蔽层侧参考位置,以获得上屏蔽和下屏蔽之间的间隙长度(GL),导致与之前的间隙较窄。 此外,由于底层具有非晶结构,所以下层不会对要在其上形成的各层的结晶取向产生不利影响,并且下层的表面具有良好的平坦化性。 因此,PW50(半幅度脉冲宽度)和SN比可以比以前更多地改善,而不会导致电阻变化率(&Dgr; R / R)等的降低,从而实现适于提高记录密度的结构。
摘要:
A tunnel magnetoresistive sensor includes a pinned magnetic layer, an insulating barrier layer formed of Mg—O, and a free magnetic layer. A barrier-layer-side magnetic sublayer constituting at least part of the pinned magnetic layer and being in contact with the insulating barrier layer includes a first magnetic region formed of CoFeB or FeB and a second magnetic region formed of CoFe or Fe. The second magnetic region is disposed between the first magnetic region and the insulating barrier layer.
摘要:
In a method for manufacturing a magnetic field sensing element including an electrode layer overlying a second antiferrogmagnetic layer and a first free magnetic layer where the electrode layer exposes a portion of the second magnetic layer, a portion of the second antiferromagnetic layer not covered with the electrode layer and a portion of the first free magnetic layer are removed using the electrode layer as a mask after laminating each layer to form a bottom type spin-valve thin film magnetic element, thereby enabling the first free magnetic layer to be endowed with a sufficient exchange coupling magnetic field by substantially eliminating the tapered portion of the remaining second antiferromagnetic layer thereby enabling the magnetization of the second free magnetic layer to be put into a single domain state.
摘要:
A tunnel magnetoresistive sensor includes a pinned magnetic layer, an insulating barrier layer formed of Mg—O, and a free magnetic layer. A barrier-layer-side magnetic sublayer constituting at least part of the pinned magnetic layer and being in contact with the insulating barrier layer includes a first magnetic region formed of CoFeB or FeB and a second magnetic region formed of CoFe or Fe. The second magnetic region is disposed between the first magnetic region and the insulating barrier layer.
摘要:
An underlying layer is composed of Co—Fe—B that is an amorphous magnetic material. Thus, the upper surface of the underlying layer can be taken as a lower shield layer-side reference position for obtaining a gap length (GL) between upper and lower shields, resulting in a narrower gap than before. In addition, since the underlying layer has an amorphous structure, the underlying layer does not adversely affect the crystalline orientation of individual layers to be formed thereon, and the surface of the underlying layer has good planarizability. Accordingly, PW50 (half-amplitude pulse width) and SN ratio can be improved more than before without causing a decrease in rate of change in resistance (Δ R/R) or the like, thereby achieving a structure suitable for increasing recording density.
摘要:
A magnetic sensing element includes a laminate, the laminate including a first antiferromagnetic layer; a pinned magnetic layer, the magnetization direction thereof being pinned by the first antiferromagnetic layer; a nonmagnetic conductive layer; a free magnetic layer, the magnetization direction thereof being variable in response to an external magnetic field; a nonmagnetic interlayer; a ferromagnetic layer; and a second antiferromagnetic layer. The laminate has a recess extending through the second antiferromagnetic layer and the ferromagnetic layer, a bottom face of the recess lying in the nonmagnetic interlayer, the width of the bottom face in a track width direction being equal to a track width. The free magnetic layer is magnetized in a direction substantially orthogonal to the magnetization direction of the pinned magnetic layer as a result of magnetic coupling with the ferromagnetic layer. A method for making such a magnetic sensing element is also disclosed.
摘要:
The present invention provides a spin-valve type thin film magnetic element that is able to certainly align the magnetization direction of the free magnetic layer in one direction by improving the exchange coupling magnetic field generated between the bias layers and ferromagnetic layer, and is able to reduce the thickness of the bias layer to be smaller than the thickness of the bias layer of the conventional spin-valve type thin film magnetic element for obtaining the same magnitude of the exchange coupling magnetic layer as that in the conventional spin-valve type thin film magnetic element.
摘要:
A longitudinal bias layer is laminated above a free magnetic layer with a nonmagnetic layer provided therebetween so that the magnetization direction of the free magnetic layer is oriented by RKKY interaction with the longitudinal bias layer. The RKKY interaction exerts only between the longitudinal bias layer and the regions of the free magnetic layer which are located directly below both ends D of the longitudinal bias layer. Therefore, a thin film magnetic element can be provided, in which the width dimension of a recess formed in the longitudinal bias layer coincides with the magnetic track width.
摘要:
A CPP giant magnetoresistive head includes lower and upper shield layers, and a giant magnetoresistive element disposed between the upper and lower shield layers and including a pinned magnetic layer, a free magnetic layer and a nonmagnetic layer disposed between the pinned magnetic layer and the free magnetic layer. In the CPP giant magnetoresistive head, the pinned magnetic layer extends to the rear of the nonmagnetic layer and the free magnetic layer in the height direction, and the dimension of the pinned magnetic layer in the height direction is larger than that in the track width direction. Also, the pinned magnetic layer comprises a magnetic material having a positive magnetostriction constant or a magnetic material having high coercive force, and the end of the pinned magnetic layer is exposed at a surface facing a recording medium.
摘要:
The present invention provides a magnetic detecting element including a pinned magnetic layer and a first antiferromagnetic layer which constitutes an exchange coupling film and the structures of which are optimized for properly pinning magnetization of the pinned magnetic layer, improving reproduction output and properly complying with a narrower gap, and a method of manufacturing the magnetic detecting element. The pinned magnetic layer has a synthetic ferrimagnetic structure, and the first antiferromagnetic layer has a predetermined space C formed at the center in the track width direction to produce exchange coupling magnetic fields only between the first antiferromagnetic layer and both side portions of a first magnetic layer of the pinned magnetic layer. Therefore, the magnetization of the pinned magnetic layer can be pinned, and an improvement in reproduction output and gap narrowing can be realized. Furthermore, a magnetic detecting element with high resistance to electrostatic damage (ESD) can be manufactured. Thus, a magnetic detecting element adaptable for a future higher recording density can be provided.