摘要:
The present invention relates to a method for optimizing the design of a shape morphing structure using a genetic algorithm. The method includes defining design parameters of a surface having variable properties into a chromosome. The variable properties of the chromosome are the actual properties of the chromosome. The chromosome has a total of Nmax genes, where each gene corresponds to a variable property element in the surface. Additionally, each gene has n design parameters, wherein the design parameters are incremental changes to the actual properties of the chromosome. A genetic algorithm is employed to optimize the genes until a fitness level for at least one chromosome has been exceeded. When the fitness value for any chromosome in the population is above a predetermined threshold, then the design process is terminated and the final design solution[s] are the design parameters of the chromosome[s] that exceed the predetermined threshold value.
摘要:
Apparatuses, methods, and articles of manufacture are disclosed. An example apparatus includes processor circuitry to assign a location value hyperdimensional vector (HDV) to a location in an image of a first patch of one or more pixels, assign at least a first channel HDV to the first patch, determine at least one pixel intensity value HDV for each of the one or more pixels in the first patch, bind together each of the pixel intensity value HDVs into at least one patch intensity value HDV, bind together the at least first channel HDV and the at least one patch intensity value HDV to produce a patch consensus intensity HDV, and generate a first hyperdimensional representation patch value HDV of the first patch by binding together at least a combination of the patch consensus intensity HDV and the location value HDV.
摘要:
An apparatus to facilitate compute optimization is disclosed. The apparatus includes a plurality of processing units each comprising a plurality of execution units (EUs), wherein the plurality of EUs comprise a first EU type and a second EU type
摘要:
A synaptic time-multiplexed (STM) neuromorphic network includes a neural fabric that includes nodes and switches to define inter-nodal connections between selected nodes of the neural fabric. The STM neuromorphic network further includes a neuromorphic controller to form subsets of a set of the inter-nodal connections representing a fully connected neural network. Each subset is formed during a different time slot of a plurality of time slots of a time multiplexing cycle of the STM neuromorphic network. In combination, the inter-nodal connection subsets implement the fully connected neural network. A method of synaptic time multiplexing a neuromorphic network includes providing the neural fabric and forming the subsets of the set of inter-nodal connections.
摘要:
A method and system for characterizing, detecting, and predicting or forecasting multiple target events from a past history of these events includes compressing temporal data streams into self-organizing map (SOM) clusters, and determining trajectories of the temporal streams via the clusters to predict the multiple target events. The system includes an evolutionary multi-objective optimization (EMO) module for processing the temporal data streams, which are obtained from a plurality of heterogeneous domains; a SOM module for characterizing the temporal data streams into self-organizing map clusters; and a target event prediction (TEP) module for generating prediction models of the map clusters. The SOM module employs a vector quantization method that places a set of vectors on a low-dimensional grid in an ordered fashion. The prediction models each include trajectories of the temporal data streams, and the system predicts the multiple target events using the trajectories.
摘要:
Described is a system for temporal prediction. The system includes an extraction module, a mapping module, and a prediction module. The extraction module is configured to receive X(1), . . . X(n) historical samples of a time series and utilize a genetic algorithm to extract deterministic features in the time series. The mapping module is configured to receive the deterministic features and utilize a learning algorithm to map the deterministic features to a predicted {circumflex over (x)}(n+1) sample of the time series. Finally, the prediction module is configured to utilize a cascaded computing structure having k levels of prediction to generate a predicted {circumflex over (x)}(n+k) sample. The predicted {circumflex over (x)}(n+k) sample is a final temporal prediction for k future samples.
摘要:
A method for enhancing the quality of a digital image by using a single user-defined parameter. A virtual image is created based on the single user-defined parameter and the original digital image. An adaptive contrast enhancement algorithm operates on a logarithmically compressed version of the virtual image to produce adaptive contrast values for each pixel in the virtual image. A dynamic range adjustment algorithm is used to generate logarithmic enhanced pixels based on the adaptive contrast values and the pixels of the logarithmically compressed version of the virtual image. The logarithmic enhanced pixels are exponentially expanded and scaled to produce a compensated digital image.
摘要:
Anomaly prediction of battery parasitic load includes processing input data related to a state of charge for a battery and a durational factor utilizing a machine learning algorithm and generating a predicted start-up state of charge. Warnings are issued if the predicted start-up state of charge drops below a threshold level within an operational time.
摘要:
A method for characterizing, detecting and predicting an event of interest, a target event, based on temporal patterns useful for predicting a probable occurrence of the target event is disclosed. Measurable events and their features are defined and quantized into event classes. Temporal series of the event classes are analyzed, and preliminary prediction rules established by analyzing temporal patterns of the event classes that precede an occurrence of the target event using a sliding time window. The quality of the preliminary prediction rules is evaluated and parameters thereof are optimized by using a defined fitness function, thereby defining finalized prediction rules. The finalized prediction rules are then made available for application on temporal series of the event classes to forecast a probable occurrence of the target event.
摘要:
A method for enhancing the quality of a digital image by using a single user-defined parameter. A virtual image is created based on the single user-defined parameter and the original digital image. An adaptive contrast enhancement algorithm operates on a logarithmically compressed version of the virtual image to produce adaptive contrast values for each pixel in the virtual image. A dynamic range adjustment algorithm is used to generate logarithmic enhanced pixels based on the adaptive contrast values and the pixels of the logarithmically compressed version of the virtual image. The logarithmic enhanced pixels are exponentially expanded and scaled to produce a compensated digital image.