摘要:
A method of determining cell cycle phase data for cells comprising at least one luminescent reporter capable of emitting radiation, the at least one luminescent reporter comprising a first luminescent reporter which is capable of being indicative of at least one cell cycle phase, said method comprising: storing classification information for classifying individual cells into different cell cycle phases using an automated classification process; receiving image data created by detecting radiation emitted by said at least one luminescent reporter; analyzing said image data to identify object areas in the image data which correspond to individual cells; analyzing said image data, on the basis of said identified object areas, to determine, for a selected cell, one or more measurements including a measurement of a parameter relating to at least a cytoplasmic component of the cell; and applying said classification information to said measurements to classify the selected cell into a selected one of a plurality of sub-populations of cells, each sub-population having cells in a different cell cycle phase.
摘要:
A method of classifying cells into subpopulations using cell classifying data is described. The method comprises receiving and analyzing image data to identify object areas in the image data to determine, for at least one selected first cell, one or more measurements. A first parameter set is derived from the measurements for the first cell, the first parameter set comprising at least one of said one or more measurements. The first set of cells are classified into subpopulations, and identified to produce first identifying data. Cell classifying data for use in classifying a second set of cells into subpopulations is derived from the first parameter set and the first identifying data. A second set of cells is classified into subpopulations on the basis of one or more measurements taken for cells in the second set of cells, by use of the cell classifying data. The parameter sets of cells may be represented as vectors in an n-dimensional space.
摘要:
A method of classifying cells into subpopulations using cell classifying data is described. The method comprises receiving and analyzing image data to identify object areas in the image data to determine, for at least one selected first cell, one or more measurements. A first parameter set is derived from the measurements for the first cell, the first parameter set comprising at least one of said one or more measurements. The first set of cells are classified into subpopulations, and identified to produce first identifying data. Cell classifying data for use in classifying a second set of cells into subpopulations is derived from the first parameter set and the first identifying data. A second set of cells is classified into subpopulations on the basis of one or more measurements taken for cells in the second set of cells, by use of the cell classifying data. The parameter sets of cells may be represented as vectors in an n-dimensional space.
摘要:
A method of analysing a plurality of biological entities using an imaging apparatus. The method comprises: providing a marker for said plurality of biological entities, said marker being capable of identifying objects within said plurality of biological entities when detected using the imaging apparatus, the method of provision being arranged such that said marker is capable of identifying said objects during a first time period, and said marker is less capable of identifying said objects during a second time period; during the first time period, recording a marked-up image in which spatial definitions of said objects are identifiable from said marker; during the second time period, recording a first image of said plurality of biological entities; and generating a spatial definition for an object in said first image using data derived from said marked-up image.
摘要:
A spectrophotometer has a first photodetector (24) and a second photodetector (25) which is displaced spatially from the first photodetector in the direction of increasing wavelength in the spectrum. At any given time the second photodetector receives light at a wavelength which is substantially greater than that being received simultaneously by the first photodetector at that time. The first photodetector has first range of wavelengths over which it is operable and a first upper operating limit, and the second photodetector has a second range of wavelengths over which it is operable and a second upper operating limit, the second range overlapping the first range and the second upper operating limit being greater than the first upper operating limit. Thus the range of operation is extended, and data in two different ranges is processed simultaneously. The spectrophotometer comprises a housing (1) containing a light source (11), a monochromator (15, 16, 18) and the photodetectors, there being a fibre optic connected to a probe (2) for transmitting light from the light source to a sample to be analysed and receiving light from the sample. Optical components are mounted to a chassis (26) of the housing rigidly, the chassis being connected to the housing by shock absorbing mounts (28, 29). The light source is mounted to the housing by means of an adjuster (24) providing for adjustment laterally with respect to the optical axis of the light source.
摘要:
An automated method for measuring the development of a biofilm, containing one or more fluorescent moieties, on a plurality of surfaces using a confocal imaging system including: a) a radiation source system for forming a beam of electromagnetic radiation including one or more wavelengths; b) an optical system for directing and focusing said beam onto one or more planes of the object; c) a detection system for detecting electromagnetic radiation emitted from the object and producing image data; and d) a scanning system for scanning the object in a plurality of planes with the electromagnetic radiation, the method comprising the steps of: i) growing said biofilm on said plurality of surfaces; ii) detecting the presence of said one or more fluorescent moieties within the biofilm by scanning the biofilm with electromagnetic radiation in a plurality of planes and collecting fluorescent emissions to produce a plurality of images; and iii) analysing said images by means of a data processing system under the control of computer software to determine the structure of the biofilm.