摘要:
Porous nano-imprint lithography templates may include pores, channels, or porous layers arranged to allow evacuation of gas trapped between a nano-imprint lithography template and substrate. The pores or channels may be formed by etch or other processes. Gaskets may be formed on an nano-imprint lithography template to restrict flow of polymerizable material during nano-imprint lithography processes.
摘要:
An imprint lithography template or imprinting stack includes a porous material defining a multiplicity of pores with an average pore size of at least about 0.4 nm. A porosity of the porous material is at least about 10%. The porous template, the porous imprinting stack, or both may be used in an imprint lithography process to facilitate diffusion of gas trapped between the template and the imprinting stack into the template, the imprinting stack or both, such that polymerizable material between the imprinting stack and the template rapidly forms a substantially continuous layer between the imprinting stack and the template.
摘要:
An imprint lithography template or imprinting stack includes a porous material defining a multiplicity of pores with an average pore size of at least about 0.4 nm. A porosity of the porous material is at least about 10%. The porous template, the porous imprinting stack, or both may be used in an imprint lithography process to facilitate diffusion of gas trapped between the template and the imprinting stack into the template, the imprinting stack or both, such that polymerizable material between the imprinting stack and the template rapidly forms a substantially continuous layer between the imprinting stack and the template.
摘要:
A nano-imprint lithography template includes a non-porous base layer, a cap layer, and a porous layer between the base layer and the cap layer. The porous layer defines a multiplicity of pores and has an ordered pore structure. The cap layer is permeable to helium, and the pores in the porous layer are configured to accept gas passing through the cap layer during an imprint lithography process. The porous layer provides high porosity with a Young's modulus and hardness that are advantageous for imprint lithography processes.
摘要:
An imprint lithography template includes a porous material defining a multiplicity of pores with an average pore size of at least about 0.4 nm. The porous material includes silicon and oxygen, and a ratio of Young's modulus (E) to relative density of the porous material with respect to fused silica (ρporous/ρfused silica) is at least about 10:1. A refractive index of the porous material is between about 1.4 and 1.5. The porous material may form an intermediate layer or a cap layer of an imprint lithography template. The template may include a pore seal layer between a porous layer and a cap layer, or a pore seal layer on top of a cap layer.
摘要:
An imprint lithography template includes a porous material defining a multiplicity of pores with an average pore size of at least about 0.4 nm. The porous material includes silicon and oxygen, and a ratio of Young's modulus (E) to relative density of the porous material with respect to fused silica (pporous/pfused silica) is at least about 10:1. A refractive index of the porous material is between about 1.4 and 1.5. The porous material may form an intermediate layer or a cap layer of an imprint lithography template. The template may include a pore seal layer between a porous layer and a cap layer, or a pore seal layer on top of a cap layer.
摘要:
Fabricating a solar cell stack includes forming a nanopatterned polymeric layer on a first surface of a silicon wafer and etching the first surface of the silicon wafer to transfer a pattern of the nanopatterned polymeric layer to the first surface of the silicon wafer. A layer of reflective electrode material is formed on a second surface of the silicon wafer. The nanopatterned first surface of the silicon wafer undergoes a buffered oxide etching. After the buffered oxide etching, the nanopatterned first surface of the silicon wafer is treated to decrease a contact angle of water on the nanopatterned first surface. Electron donor material is deposited on the nanopatterned first surface of the silicon wafer to form an electron donor layer, and a transparent electrode material is deposited on the electron donor layer to form a transparent electrode layer on the electron donor layer.
摘要:
A nano-imprint lithography template includes a rigid support layer, a cap layer, and a flexible cushion layer positioned between the support layer and the cap layer. Treating an imprint lithography template includes heating the template to desorb gases from the template. Heating the template includes radiating the template at a selected wavelength with, for example, infrared radiation. The selected wavelength may correspond to a wavelength at which the template material is strongly absorbing.
摘要:
A solid layer is formed by applying a multiplicity of discrete portions of a fluid composition onto a surface of an imprint lithography substrate, and allowing the discrete portions of the composition to spontaneously spread on the surface of the substrate to form a substantially continuous layer. The composition includes a solvent and a solid or a solvent and a polymerizable material. The composition can be a solution or a dispersion. At least some of the solvent is evaporated from the composition, and a solid layer is formed (e.g., polymerized or dried) on the substrate. The solid layer is substantially free of interstitial voids.
摘要:
A solid layer is formed by applying a multiplicity of discrete portions of a fluid composition onto a surface of an imprint lithography substrate, and allowing the discrete portions of the composition to spontaneously spread on the surface of the substrate to form a substantially continuous layer. The composition includes a solvent and a solid or a solvent and a polymerizable material. The composition can be a solution or a dispersion. At least some of the solvent is evaporated from the composition, and a solid layer is formed (e.g., polymerized or dried) on the substrate. The solid layer is substantially free of interstitial voids.