摘要:
A low temperature sintering ceramic material, having low temperature sinterability and excellent thermal conductivity, is particularly suitable for use in making an IC substrate of a ceramic printed plate board. This low temperature sintering ceramic material has two composition types. One is a binary composition type ceramic material consisting essentially of MgO and B.sub.2 O.sub.3, and the other is a ternary composition type ceramic material composed of principal components consisting of MgO and B.sub.2 O.sub.3 and assisting components consisting of one or more selected from Li.sub.2 O, Na.sub.2 O, K.sub.2 O, a fluoride of an alkali metal and a fluoride of an alkaline earth metal. After sintering, MgO and B.sub.2 O.sub.3 are respectively contained at 50 to 90 mol% and 10 to 50 mol% on 100 mol% of the total amount of MgO and B.sub.2 O.sub.3.
摘要翻译:具有低温烧结性和优异导热性的低温烧结陶瓷材料特别适用于制造陶瓷印刷板的IC基片。 该低温烧结陶瓷材料具有两种组成类型。 一种是基本上由MgO和B2O3组成的二元组成型陶瓷材料,另一种是由MgO和B2O3组成的主要组分和由一种或多种选自Li2O,Na2O,K2O, 碱金属的氟化物和碱土金属的氟化物。 烧结后,MgO和B2O3的含量相对于MgO和B 2 O 3的总量的100摩尔%分别为50〜90摩尔%,10〜50摩尔%。
摘要:
An Al film is formed on a barrier metal covering a thin film resistor to have a first opening. A photo-resist is formed on the Al film and in the opening, and is patterned to have a second opening having an opening area smaller than that of the first opening and open in the first opening to expose the barrier metal therefrom. Then, the barrier metal is etched through the second opening. Because the barrier metal is etched from an inner portion more than the opening end of the first opening, under-cut of the barrier metal is prevented.
摘要:
A fuse fusible type semiconductor device capable of reducing energy required for fusing and a production method of the semiconductor device. In a semiconductor device equipped with a heat-fusible thin film resistor, the thin film resistor formed on a substrate 1 through an insulating film 2 is made of chromium, silicon and tungsten, and films 7 and 8 of a insulator including silicon laminated on the upper surface of the fusing surface, aluminum films 5 are disposed on both sides of the fusing surface and a barrier film 4. This semiconductor device is produced by a lamination step of sequentially forming a first insulating film 2, a thin film resistor 3, a barrier film 4 and an aluminum film 5 on a substrate 1 for reducing drastically fusing energy, an etching step of removing the barrier film 4 and the aluminum film 5 from the fusing region 31 of the thin film resistor 3, and an oxide film formation step of depositing the insulator including silicon films 7 and 8.
摘要:
A method for cutting a semiconductor device is provided. The device includes a first semiconductor layer, an insulation layer, and a second semiconductor layer. The method includes the steps of: forming a semiconductor part in the first semiconductor layer; irradiating a laser beam on a surface of the first semiconductor layer; and cutting the device into a semiconductor chip by using the laser beam. The laser beam is reflected at an interface so that a first reflected beam is generated, and the laser beam is reflected at another interface so that a second reflected beam is generated. The insulation film has a thickness, which is determined to weaken the first and second reflected beams each other.
摘要:
A thin film resistor on a semiconductor device may be laser trimmed while reducing the influence of film thickness of a passivation film formed on the thin film resistor. An underlying oxide film consisting of a BPSG film and a silicon oxide film is formed on an Si substrate. A silicon oxide film and a silicon nitride film are formed on the underlying film as a passivation film, and a silicon oxide film is formed on this assembly. The silicon oxide film contributes to controlling a variation of the laser energy absorption rate of a thin film resistor due to an uneven thickness of the silicon nitride film. Thus, it is possible to stabilize adjustment of the resistance value of the thin film resistor with a laser.
摘要:
An Al film is formed on a barrier metal covering a thin film resistor to have a first opening. A photo-resist is formed on the Al film and in the opening, and is patterned to have a second opening having an opening area smaller than that of the first opening and open in the first opening to expose the barrier metal therefrom. Then, the barrier metal is etched through the second opening. Because the barrier metal is etched from an inner portion more than the opening end of the first opening, under-cut of the barrier metal is prevented.
摘要:
The disclosed method of measuring the thickness of an active layer of an SOI substrate maintains the accuracy of previous methods but can be performed quickly and during processing of the substrate. The method includes reading data from light reflected from the substrate. A range of light wavelengths for analysis is selected, which avoids the problem of nodes, at which interference between light reflected from different surfaces is weakened. The method determines a relationship between wavelength and reflection intensity and determines peak values of the relationship. The wavelengths corresponding to an arbitrary pair of the peak values, and the number of waves between the peak values, are used to calculate the thickness of the active layer. The method includes an error correction procedure that increases measurement accuracy.
摘要:
When an SOI substrate composed of a support wafer and an element formation wafer that are bonded together with an insulating film interposed therebetween is polished from a surface of the element formation wafer, a thickness of the element formation wafer is measured based on a relation between an intensity and a wavelength of a light that is irradiated to the SOI substrate from a side of the support wafer and is reflected by the SOI substrate. Thus, the measurement of the thickness of the element formation wafer can be performed simultaneouly with the polishing of the SOI substrate.
摘要:
When a barrier metal disposed on a thin film resistor material is wet-etched to expose the underlying thin film resistor material as a thin film resistor, the wet etching is performed at first and second steps. The first step is performed using H2O2/NH4OH solution, and is stopped before the thin film resistor material is exposed. Then, the second step is performed using H2O2/H2O solution until the thin film resistor material is exposed with a desired length, thereby forming the thin film resistor.
摘要翻译:当设置在薄膜电阻器材料上的阻挡金属被湿蚀刻以暴露作为薄膜电阻器的下面的薄膜电阻器材料时,在第一和第二步骤中进行湿蚀刻。 第一步是使用H 2 O 2 / NH 4 OH溶液进行,并在薄膜电阻材料暴露之前停止。 然后,使用H 2 O 2 / H 2 O溶液进行第二步骤,直到薄膜电阻材料以期望的长度曝光,从而形成薄膜电阻器。
摘要:
In a method for manufacturing a semiconductor device, a barrier metal disposed on a metallic thin film for forming a thin film resistor is patterned by wet-etching. The wet-etching produces a residue of the barrier metal. The residue is removed after the oxidation thereof. Accordingly the residue is completely removed. As a result, the patterning of the thin film resistor is stably performed, and short-circuit does not occur to a wiring pattern disposed above the barrier metal.