摘要:
A control command attaching the same identifier to related commands is input from an application to an AV data processing control device. Further, a command for linking this identifier and a trigger generated by a contact input-1 is input. When the contact input-1 is generated, all control commands containing the identifier are executed. Further, when the link of the contact input-1 and the identifier of the control command is invalidated, even if the contact input-1 is generated, none of the linked control commands are executed. The execution of the control commands is carried out by controlling the controlled devices by the IDCs.
摘要:
This invention relates to an apparatus for storing and transmitting AV data. A receiving buffer unit for storing AV data temporarily, a transmitting buffer unit for storing temporarily the AV data to be transmitted, and a primary storage unit for storing AV data and a secondary storage units for storing AV data are connected to each other by means of a subnetwork. A server control unit for controlling the respective units is connected to the subnetwork. Since these units are connected by means of the subnetwork, any restriction is not given to spaces for installing the units. The capacities of the primary and secondary storage units and the transmitting buffer unit are selected so that they become larger in order of the secondary storage unit, the primary storage unit and the transmitting buffer unit. Thereby, the storage units and the transmitting buffer unit are controlled in a hierarchical form. This makes it possible to construct an AV sever system having large capacity and good responsivity with good cost balance.
摘要:
A nitride semiconductor element includes a Si substrate; a buffer layer including (a) an AlN layer formed on a primary surface of the Si substrate; and (b) an AlGaN deposit layer formed by laminating multiple AlGaN layers on the AlN layer and having a total thickness ranging from 100 nm to 500 nm; a GaN electron transfer layer formed on the AlGaN deposit layer and having a thickness ranging from 500 nm to 2000 nm provided that the GaN electron transfer layer is thicker than the AlGaN deposit layer; and an AlGaN electron supply layer formed on the GaN electron transfer layer, wherein the AlGaN deposit layer includes an AlGaN layer that is provided closer to the AlN layer and has an Al component that ranges from about 40% to about 60%, and a reference AlGaN layer that has an Al component (%) that is lower than that of the AlGaN layer.
摘要:
In a power converting apparatus which converts AC power into DC power, an inverter circuit including at least one series-connected single-phase inverter is connected in a downstream of a stage in which an AC input is rectified in series therewith. In the downstream stage of the inverter circuit, there are provided a smoothing capacitor connected via a rectifier diode and a short-circuiting switch for bypassing the smoothing capacitor. The short-circuiting switch is set to an ON state only in each of short-circuiting phase ranges of which midpoint matches each of zero-crossing phases and an output of the inverter circuit is controlled by using a current command so that a DC voltage of the smoothing capacitor follows a target voltage and an input power factor is improved.
摘要:
An inverter device includes a plurality of switching circuits in which first switching elements including Si semiconductors and second switching element including WBG semiconductors having ON resistance smaller than that of the first switching elements and having switching speed higher than that of the first switching elements are connected in parallel. The inverter device includes a converting circuit that converts a direct-current voltage into a desired alternating-current voltage and a driving unit that generates a plurality of driving signals for respectively turning on and off the switching circuits. The inverter device includes, for each of the switching circuits, a gate circuit that, based on the driving signals, turns on the second switching element later than the first switching element and turns off the first switching element later than the second switching element.
摘要:
A nitride semiconductor element capable of accommodating GaN electron transfer layers of a wide range of thickness, so as to allow greater freedom of device design, and a nitride semiconductor element package with excellent voltage tolerance performance and reliability are provided. On a substrate (41), a buffer layer (44) including an AlN layer (47), a first AlGaN layer (48) (with an average Al component of 50%) and a second AlGaN layer (49) (with an average Al component of 20%) is formed. On the buffer layer (44), an element action layer including a GaN electron transfer layer (45) and an AlGaN electron supply layer (46) is formed. Thus, an HEMT element (3) is constituted.
摘要:
There is provided a nitride semiconductor light emitting device having a light reflection layer capable of preventing reflectivity from lowering and luminance from lowering due to deterioration of quality of an active layer. A nitride semiconductor laser includes at least a light emitting layer forming portion (3) provided on a first light reflection layer (2) provided on a substrate (1). The first light reflection layer (2) is formed with laminating a low refractivity layer (21) and a high refractivity layer (22) which have a different refractivity from each other, and the low refractivity layer (21) of the first light reflection layer is formed with a single layer structure of an AlxGa1−xN layer (0≦x≦1), and the high refractivity layer (22) of the first light reflection layer is formed with a multi layer structure formed by laminating alternately an AlyGa1−yN layer (0≦y≦0.5 and y
摘要翻译:提供一种氮化物半导体发光器件,其具有能够防止由于有源层的质量劣化而引起的反射率降低和降低亮度的光反射层。 氮化物半导体激光器至少包括设置在设置在基板(1)上的第一光反射层(2)上的发光层形成部(3)。 第一光反射层(2)形成为具有彼此不同的折射率的低折射率层(21)和高折射率层(22),并且第一光反射层的低折射率层(21) 形成有Al x Ga 1-x N层(0& nlE; x≦̸ 1)的单层结构,并且第一光反射层的高折射率层(22)形成有多层结构,其通过交替层叠AlyGa1-yN 层(0& nlE; y≦̸ 0.5和y n1; 1和t
摘要:
To provide a method for manufacturing InGaN which causes less segregation of In and achieves high crystallinity of an InGaN layer with the proportion of In increased.The method for manufacturing an InGaN layer including growing an InGaN layer under conditions of a growth temperature of 700 to 790° C., a growth rate of 30 to 93 Å/min, and a flow rate of trimethylindium of 0.882×10−5 to 3.53×10−5 mol/min.
摘要翻译:提供一种制造InGaN的方法,其使In的偏析较少,并且In增加的InGaN层的结晶度达到高结晶度。 InGaN层的制造方法,包括在生长温度为700〜790℃,生长速度为30〜93 /分钟,三甲基铟的流量为0.882×10 -5〜3.53的条件下生长InGaN层 x 10 -5 mol / min。
摘要:
A semiconductor light emitting device of the present invention includes a substrate (1), an n-GaN layer (2) supported by the substrate (1), a p-GaN layer (7) which is located farther from the substrate (1) than the n-GaN layer (2) is, an active layer (4) formed between the n-GaN layer (2) and the p-GaN layer (7) and containing InGaN, a sublimation preventing layer (5) formed between the active layer (4) and the p-GaN layer (7) and containing InGaN, and an In composition gradient layer (6) sandwiched between the sublimation preventing layer (5) and the p-GaN layer (7) and having such In composition ratio gradient that the In composition ratio decreases in the thickness direction toward the p-GaN layer (7).
摘要:
A plurality of antenna elements, each of which has first and second linear conductors whose first ends are electrically interconnected are formed. The antenna elements are arranged in plane in such a way that the first and second linear conductors are alternated and separated from one another at regular intervals, thereby forming one or more array antennas which are disposed in a chamber. The second ends of the first linear conductors are connected to a high-frequency power supply, and the second ends of the second linear conductors are connected to ground. A plurality of substrates are parallel placed on both sides of the array antennas at distances approximate to the distances between the linear conductors. A film is formed by introducing an ingredient gas into the chamber.