Abstract:
Provided is a Web bulletin board system (10) capable of lessening the burden in forming a travel plan when a group of people plan a trip. This Web bulletin board system (10) comprises a center server (20) which deems character strings indicated by predetermined symbols in messages in a chat to be destinations and automatically generates a list of destinations.
Abstract:
A power output apparatus 1 to 1D including an engine 6, a motor 7, and a transmission 20 to 20D having two transmission shafts connected to the engine 6 is provided. The transmission includes a power combination mechanism 30 adapted so as to be able to rotate first to third elements differentially from each other. The first element is connected to any one of the two transmission shafts, the second element is connected to a driving shaft 9 or 9, and the third element is connected to the motor 7. The second element combines the power transmitted from the first element and the power transmitted from the third element, and transmits the combined power to the driving shaft 9 and 9. The other transmission shaft of the two transmission shafts transmits power to the driving shaft 9 or 9 without going via the power combination mechanism 30.
Abstract:
A hybrid vehicle is driven by a power unit which includes: a first rotating machine including a first rotor, a first stator, and a second rotor, wherein the number of magnetic poles generated by an armature row of the first stator and one of the first rotor and the second rotor are connected to a drive shaft; a power engine, wherein an output shaft of the power engine is connected to the other of the first rotor and the second rotor; a second rotating machine; a capacitor; and a transformer that steps up an output voltage of the capacitor. The hybrid vehicle includes: a voltage demand calculator that calculates a voltage demand required for each of the first rotating machine and the second rotating machine in accordance with an operating condition of the hybrid vehicle; a step-up execution determining unit that allows the transformer to step up the voltage, when at least one of the voltage demand of the first rotating machine and the voltage demand of the second rotating machine is higher than a first threshold value; and a controller that controls the transformer in accordance with the result determined by the step-up execution determining unit. Accordingly, it is possible to achieve reduction in the size and cost of the power unit and enhance the driving efficiency of the power unit.
Abstract:
A hybrid vehicle is driven by a power unit which includes: a first rotating machine including a first rotor, a first stator, and a second rotor, wherein the number of magnetic poles generated by an armature row of the first stator and one of the first rotor and the second rotor are connected to a drive shaft; a power engine, wherein an output shaft of the power engine is connected to the other of the first rotor and the second rotor; a second rotating machine; and a capacitor. A traveling mode of the hybrid vehicle includes an EV traveling mode and an ENG traveling mode, wherein the hybrid vehicle travels with a motive power from at least one of the first rotating machine and the second rotating machine in the EV traveling mode, and the hybrid vehicle travels with a motive power from the power engine in ENG traveling mode. The hybrid vehicle includes: an EV traveling mode predicting unit that predicts a switching from the ENG traveling mode to the EV traveling mode; and a controller that controls a remaining capacity of the capacitor in accordance with prediction result obtained by the EV traveling mode predicting unit so as to change a target value of the remaining capacity. Accordingly, it is possible to achieve reduction in the size and cost of the power unit and enhance the driving efficiency of the power unit.
Abstract:
To provide a power plant which makes it possible to make the power plant more compact in size, reduce manufacturing costs thereof, and improve the degree of freedom in design. The power plant 1 comprises an engine 3, and first and second rotating machines 10 and 20, and drives front wheels 4 by motive power from these. The first rotating machine 10 includes first and second rotors 14 and 15, and a stator 16, and is configured such that a ratio between the number of armature magnetic poles generated in the stator 16, the number of magnetic poles of the first rotor 14, and the number of soft magnetic material cores 15a of the second rotor 15 becomes 1:m:(1+m)/2 (m≠1.0).
Abstract:
When receiving a traffic information providing request, a traffic information providing apparatus analyzes which area's traffic information is requested based on the received request information. Traffic information of road links located in the requested area is read from the traffic information, and it is determined whether the road links' traffic information is similar or not. Similar links configure a link group, and traffic information corresponding to the link group is created. Traffic information of the configured link group is delivered to an in-vehicle information apparatus.
Abstract:
A power plant that is capable of attaining downsizing and reduction of manufacturing costs and enhancing the degree of freedom in design thereof. In the power plant 1, a first rotating machine 11 includes a first rotor 14 having a predetermined plurality of magnetic poles 14a, a stator 13 that generates a predetermined plurality of armature magnetic poles to thereby generate a rotating magnetic field, and a second rotor 15 having a predetermined plurality of soft magnetic material elements 15a. The ratio between the number of the armature magnetic poles, the number of the magnetic poles, and the number of the soft magnetic material elements is set to 1:m:(1+m)/2 (m≠1.0). One of the rotors 14 and 15 is mechanically connected to an output portion 3a of a heat engine 3, and the other of the rotors 14 and 15 and a rotor 23 of a second rotating machine 21 are mechanically connected to driven parts DW and DW. Further, in starting the heat engine 3, when the rotational speed of the output portion 3a is not lower than a first predetermined value NEST1, the heat engine 3 is started in a state where the rotational speed of the output portion 3a is not increased.
Abstract:
An electric motor 1 includes a first structure 4 including a magnetic pole row formed by a predetermined plurality of magnetic poles 4a arranged in a predetermined direction, a second structure 3 including an armature row disposed in a manner opposed to the magnetic pole row, for generating moving magnetic fields moving in the predetermined direction between the armature row and the magnetic pole row, and a third structure 5 including a soft magnetic material element row. The third structure disposed such that the soft magnetic material element row is positioned between the magnetic pole row and the armature row. A ratio between the number of the armature magnetic poles, the number of the magnetic poles 4a, and the number of the soft magnetic material elements 5a is set to 1:m:(1+m)/2 (m≠1.0).
Abstract:
The present invention provides increased processing reliability for a service of performing predetermined processes on document data through cooperation among the processes over a network A service processing device in a service processing system providing a service of performing predetermined processes on document data through cooperation among the processes over a network comprises a controller that controls reexecution of a process in which an error occurs, if the error occurs on the document data in the course of the processes.
Abstract:
An accessory drive system includes a stator, a first rotor, and a second rotor, which respectively include armatures, permanent magnets, and first and second cores. One of the first and second rotors is connected to an accessory, and the other to an internal combustion engine. When the polarity of a first armature magnetic pole is different from the polarity of a first magnetic pole of an opposed permanent magnet, the polarity of a second armature magnetic pole becomes the same as the polarity of a second magnetic pole of the opposed permanent magnet. When each first core is between the first magnetic pole and the first armature magnetic pole, each second core is between a pair of the second armature magnetic poles circumferentially adjacent to each other, and between a pair of the second magnetic poles circumferentially adjacent to each other.