Abstract:
The invention relates to a method for manufacturing compound material wafers, in particular, silicon on insulator type wafers, by providing an initial donor substrate, forming an insulating layer over the initial donor substrate, forming a predetermined splitting area in the initial donor substrate, attaching the initial donor substrate onto a handle substrate and detaching the donor substrate at the predetermined splitting area, thereby transferring a layer of the initial donor substrate onto the handle substrate to form a compound material wafer. In order to be able to reuse the donor substrate more often, the invention proposes to carry out the thermal treatment step to form the insulating layer at a temperature of less than 950° C., in particular, less than 900° C., and preferably at 850° C. The invention also relates to a silicon on insulator type wafer manufactured according to the inventive method.
Abstract:
This invention provides methods for manufacturing compound-material wafers and methods for recycling donor substrates that results from manufacturing compound-material wafers. The provided methods includes at least one further thermal treatment step configured to at least partially reduce oxygen precipitates and/or nuclei. Reduction of oxygen precipitates and/or nuclei, improves the recycling rate of the donor substrate.
Abstract:
A method for manufacturing a SeOI substrate that includes a thin working layer made from one or more semiconductor material(s); a support layer; and a thin buried oxide layer between the working layer and the support layer. The method includes a manufacturing step of an intermediate SeOI substrate having a buried oxide layer with a thickness greater than a thickness desired for the thin buried oxide layer; and a dissolution step of the buried oxide layer in order to form therewith the thin buried oxide layer. After the dissolution step, an oxidation step of the substrate is conducted for creating an oxidized layer on the substrate, and an oxide migration step for diffusing at least a part of the oxide layer through the working layer in order to increase the electrical interface quality of the substrate and decrease its Dit value.
Abstract:
A method for manufacturing a SeOI substrate that includes a thin working layer made from one or more semiconductor material(s); a support layer; and a thin buried oxide layer between the working layer and the support layer. The method includes a manufacturing step of an intermediate SeOI substrate having a buried oxide layer with a thickness greater than a thickness desired for the thin buried oxide layer; and a dissolution step of the buried oxide layer in order to form therewith the thin buried oxide layer. After the dissolution step, an oxidation step of the substrate is conducted for creating an oxidized layer on the substrate, and an oxide migration step for diffusing at least a part of the oxide layer through the working layer in order to increase the electrical interface quality of the substrate and decrease its Dit value.
Abstract:
A method for manufacturing heterostructures for applications in the fields of electronics, optics or opto-electronics. This method includes providing a silicon oxide layer with a thickness of less than or equal to 25 nanometers on one of a donor substrate or a receiver substrate or on both substrates, heat treating the substrate(s) that contains the silicon oxide layer at 900° C. to 1,200° C. under a neutral or reducing atmosphere that contains at least one of argon or hydrogen to form layer trapping through-holes inside the silicon oxide, bonding the substrates together at a bonding interface with the silicon oxide layer(s) positioned between them, reinforcing the bonding by annealing the substrates at 25° C. to 500° C. such that the trapping holes retaining gas species at the bonding interface, and transferring an active layer as a portion of the donor substrate onto the receiver substrate to obtain the heterostructure.
Abstract:
The invention relates to methods of fabricating a layer of at least partially relaxed material, such as for electronics, optoelectronics or photovoltaics. An exemplary method includes supplying a structure that includes a layer of strained material situated between a reflow layer and a stiffener layer. The method further includes applying a heat treatment that brings the reflow layer to a temperature equal to or greater than the glass transition temperature of the reflow layer, and the thickness of the stiffener layer is progressively reduced during heat treatment. The invention also relates to an exemplary method of fabricating semiconductor devices on a layer of at least partially relaxed material. Specifically, at least one active layer may be formed on the at least partially relaxed material layer. The active layer may include laser components, photovoltaic components and/or electroluminescent diodes.
Abstract:
The present invention relates to method of fabricating a (110) oriented silicon substrate and to a method of fabricating a bonded pair of substrates comprising such a (110) oriented silicon substrate. The invention further relates to a silicon substrate with (110) orientation and to a bonded pair of silicon substrates comprising a first silicon substrate with (100) orientation and a second silicon substrate with (110) orientation. It is the object of the present invention to provide methods and substrates of the above mentioned type with a high efficiency wherein the formed (110) substrate has at least near and at its surface virtually no defects. The object is solved by a method of fabricating a silicon substrate with (110) orientation and by a method of fabricating a bonded pair of silicon substrates, comprising the steps of providing a basic silicon substrate with (110) orientation, said basic silicon substrate having a roughness being equal or less than 0.15 nm RMS in a 2×2 μm2 or a 10×10 μm2 scan, and depositing epitaxially a silicon layer with (110) orientation on the basic silicon substrate at a pressure between 40 Torr to 120 Torr, preferably 80 Torr and at a temperature between about 1000° C. and about 1200° C. and using trichlorosilane or dichlorosilane as silicon precursor gas.
Abstract:
The invention relates to a process of treating a structure for electronics or optoelectronics, wherein the structure that has a substrate, a first oxide layer, an intermediate layer, a second oxide layer made of an oxide of a semiconductor material, and a thin semiconductor layer made of the semiconductor material. The process includes a heat treatment of the structure in an inert or reducing atmosphere with a temperature and a duration chosen for inciting an amount of oxygen of the second oxide layer to diffuse through the semiconductor layer so that the thickness of the second oxide layer decreases by a determined value. The invention also relates to a process of manufacturing a structure for electronics or optoelectronics through the use of this type of heat treatment.
Abstract:
This invention provides methods for predictively revealing, in bulk silicon substrates, latent crystalline defects in bulk silicon substrates that become apparent only after subsequent processing, e.g., after processing during which multiple layers are split and lifted from the bulk substrates. Preferred predictive methods include a revealing heat treatment of bulk substrates conducted in a non-reducing atmosphere at a temperature in the range from approximately 500° C. to 1300° C. If desired, a further revealing heat treatment or defect enlargement step can be performed to enlarge defects revealed by the first revealing heat treatment.
Abstract:
The invention relates to a method for fabricating a composite structure having heat dissipation properties greater than a bulk single crystal silicon structure having the same dimensions. The structure includes a support substrate, a top layer and an oxide layer between the support substrate and the top layer. The method includes providing a top layer made of a crystalline material, providing a support substrate of a polycrystalline material having heat dissipation properties greater than that of a bulk single crystal silicon substrate of the same dimensions; providing an oxide layer on at least one of the top layer or the support substrate; bonding the top layer and support substrate together to obtain a composite structure having the top layer, the support substrate and the oxide layer located at a bonding interface between the top layer and support substrate, and heat treating the composite structure in a non-oxidizing atmosphere at a predetermined temperature and for a predetermined duration to dissolve at least part of the oxide layer and increase the heat dissipation properties of the composite structure compared to the composite structure prior to the heat treating.