Abstract:
A gas detection device includes a gas sensor and a drive circuit. The drive circuit includes a measurement circuit, a power supply circuit, and a control circuit. The gas sensor includes a first electrode, a second electrode, a metal-oxide layer disposed between the first electrode and the second electrode, and an insulating film that covers the first electrode, the second electrode, and the metal-oxide layer, and has an opening that exposes part of a main surface of the second electrode. A resistance value of the metal-oxide layer decreases when gas containing hydrogen atoms contact the second electrode. When the resistance value of the metal-oxide layer falls outside a predetermined range, the drive circuit applies a predetermined voltage between the first electrode and the second electrode to restore the resistance value of the metal-oxide layer back into the predetermined range.
Abstract:
A forming method includes: applying a first pulse voltage to a second electrode to a variable-resistance nonvolatile memory element in first state; and executing at least once a sequence that includes determining whether the variable-resistance nonvolatile memory element is in a second state, and continuously applying a second pulse voltage followed by a third pulse voltage to the variable-resistance nonvolatile memory element when the variable-resistance nonvolatile memory element is determined not to be in the second state.
Abstract:
A variable resistance nonvolatile memory device includes: a nonvolatile memory element; an NMOS transistor connected to the nonvolatile memory element; a source line connected to the NMOS transistor; a bit line connected to the nonvolatile memory element. When a control circuit causes the nonvolatile memory element to be in the low resistance state, the control circuit controls to flow a first current from a first voltage source to a reference potential point, and applies a first gate voltage to a gate of a NMOS transistor, and when the control circuit causes the nonvolatile memory element to be in the high resistance state, the control circuit controls to flow a second current from a second voltage source to the reference potential point, and applies a second gate voltage to the gate of the NMOS transistor, the second gate voltage being lower than the first gate voltage.
Abstract:
A write method for writing to a variable resistance nonvolatile memory element, comprising applying a set of strong recovery-voltage pulses at least once to the variable resistance nonvolatile memory element when it is determined that the resistance state of the variable resistance nonvolatile memory element fails to change to a second resistance state, remaining in a first resistance state, the set of strong recovery-voltage pulses including pulses: (1) a first strong recovery-voltage pulse which has a greater amplitude than a normal second voltage for changing the resistance state to the first resistance state, and has the same polarity as the second voltage; and (2) a second strong recovery-voltage pulse which follows the first strong recovery-voltage pulse and has a longer pulse width than the pulse width of the normal first voltage for changing the resistance state to the second resistance state, and has the same polarity as the first voltage.
Abstract:
Provided is a method of writing to a variable resistance nonvolatile memory element which is capable of both improving retention characteristics and enlarging a window of operation. In the method of writing, to write “1” data (LR), first a weak HR writing process is performed in which a weak HR writing voltage pulse set for changing the variable resistance nonvolatile memory element to an intermediate resistance state is applied and, subsequently, a LR writing process is performed in which a LR writing voltage pulse set for changing the variable resistance nonvolatile memory element from the intermediate resistance state to a LR state is applied.
Abstract:
A selection circuit that selects a memory cell from a memory cell array and a read circuit for reading a resistance state of a resistance change element in the selected memory cell are provided. In memory cells of odd-numbered-layer and even-numbered-layer memory cell arrays that constitute a multilayer memory cell array, each memory cell in any of the layers has a selection element, a first electrode, a first resistance change layer, a second resistance change layer, and a second electrode that are disposed in the same order. Whether the selected memory cell is located in any layer of the multilayer memory cell array, the read circuit applies a voltage to the selected memory cell to perform the reading operation. The voltage applied to the selected memory cell causes the second electrode to become positive with reference to the first electrode in the selected memory cell.
Abstract:
A hydrogen detection apparatus includes a hydrogen sensor, a sensor control circuit configured to sense a resistance value of the hydrogen sensor, and a microcomputer configured to set an off time that differs depending on an operating environment and intermittently drive the sensor control circuit. The hydrogen sensor includes a first electrode; a metal-oxide layer on the first electrode, and in which a resistance value is configured to change in response to contacting hydrogen atoms; a second electrode on the metal-oxide layer; and an insulating film that covers at least a portion of lateral surfaces of the first electrode, the metal-oxide layer, and the second electrode. A portion of at least one of: (i) a first interface between the first electrode and the metal-oxide layer; and (ii) a second interface between the second electrode and the metal-oxide layer is uncovered by the insulating film and exposed to a detection space.