Abstract:
A nonvolatile memory device includes: resistive memory cells each of which takes either a variable state or an initial state, the resistive memory cells including at least one resistive memory cell in the initial state; and a read circuit that includes a resistance detection circuit that obtains resistance value information of the at least one resistive memory cell, and a data generation circuit that generates digital data corresponding to the resistance value information. The resistance detection circuit applies a second read voltage to the at least one resistive memory cell to obtain the resistance value information. The second read voltage is larger than a first read voltage and smaller than a voltage of a forming pulse that is an electrical stress for changing from the initial state to the variable state. The first read voltage is for reading a resistive memory cell in the variable state.
Abstract:
A non-volatile memory device includes a memory cell array including memory cells, each having a resistance value reversibly transitioning among resistance value ranges in a variable state in accordance with application of different electrical signals, a control circuit that, in operation, receives a control signal, a read circuit that, in operation, obtains pieces of resistance value information each relating to the resistance value of one of the memory cells in accordance with the control signal, and an arithmetic circuit that, in operation, calculates a binary reference value based on at least a part of the pieces of resistance value information. In operation, the read circuit selectively assigns, based on the binary reference value, one of two values to each of the pieces of resistance value information.
Abstract:
A data generating device includes: a memory cell array including a plurality of memory cells; a read circuit operative to obtain a plurality of resistance value information pieces from the plurality of memory cells; and a data generator circuit operative to set a condition on the basis of the plurality of resistance value information pieces, and generating data by allocating, on the basis of the condition, the plurality of resistance value information pieces into a plurality of sets which respectively correspond to a plurality of values constituting the data. Each of the plurality of memory cells has a characteristic where, when in a variable state, a resistance value thereof reversibly changes between a plurality of variable resistance value ranges in accordance with an electric stress applied.
Abstract:
A selection circuit that selects a memory cell from a memory cell array and a read circuit for reading a resistance state of a resistance change element in the selected memory cell are provided. In memory cells of odd-numbered-layer and even-numbered-layer memory cell arrays that constitute a multilayer memory cell array, each memory cell in any of the layers has a selection element, a first electrode, a first resistance change layer, a second resistance change layer, and a second electrode that are disposed in the same order. Whether the selected memory cell is located in any layer of the multilayer memory cell array, the read circuit applies a voltage to the selected memory cell to perform the reading operation. The voltage applied to the selected memory cell causes the second electrode to become positive with reference to the first electrode in the selected memory cell.
Abstract:
A non-volatile memory device includes a memory cell array including memory cells, a read circuit that, in operation, obtains pieces of resistance value information each relating to the resistance value of one of the memory cells, an arithmetic circuit that, in operation, calculates a binary reference value based on at least a part of the pieces of resistance value information, and a data adjustment circuit. In operation, the read circuit assigns, based on the binary reference value, 0 or 1 to each of the pieces of resistance value information. In operation, the data adjustment circuit determines whether to adjust the binary reference value, in accordance with a difference between the numbers of pieces of digital data “0” and digital data “1” in the pieces of digital data.
Abstract:
A data recording method includes recording data in memory cells on the basis of whether each memory cell is in an initial state or a variable state. The recording step includes (A) applying a forming stress to a selected memory cell in the initial state, and (B) setting a resistance value of the selected memory cell to within a first resistance range by (b1) applying a first correction signal to the selected memory cell if the resistance value of the selected memory cell is greater than a first reference value, and (b2) applying a second correction signal to the selected memory cell if the resistance value of the selected memory cell is smaller than a second reference value.
Abstract:
A non-volatile memory device comprises: a memory cell array that includes one or more memory groups each including memory cells, each of the memory cells having variable resistance value to hold a piece of data; a read circuit that, for each of the one or more memory groups, performs a read operation to obtain pieces of time information related to the memory cells in the memory group; and a data generation circuit that generates individual identification information on a basis of order of the memory cells in each of the one or more memory groups, the order corresponding to ascending order or descending order of the pieces of time information related to the memory cells in the memory group. The read circuit obtains each of the pieces of time information on a basis of a discharge phenomenon or charge phenomenon that depends on the resistance value of a corresponding one of the memory cells.
Abstract:
A non-volatile memory device includes a memory cell array including memory cells, each having a resistance value reversibly transitioning among resistance value ranges, a read circuit that, in operation, obtains pieces of resistance value information each relating to the resistance value of one of the memory cells, an arithmetic circuit that, in operation, calculates a binary reference value based on at least a part of the pieces of resistance value information, and a write circuit. In operation, the read circuit selectively assigns, based on the binary reference value, one of two values to each of the pieces of resistance value information. In operation, the write circuit performs a first write operation on a memory cell corresponding to one of the two values among the memory cells.