摘要:
A method for detecting hydrocarbons including obtaining seismic trace data for a region of interest; processing, using a processor, the seismic trace data to calculate a signal spectrum for each of a plurality of locations in the region of interest; calculating a dominant frequency of the signal spectrum; calculating at least one measure of energy decay above the dominant frequency, calculating at least one measure of energy decay below the dominant frequency, and calculating at least one measure spectral shape of the signal spectrum, and locating a hydrocarbon reservoir in the region of interest using the at least one measure of energy decay below the dominant frequency, the at least one measure of energy decay above dominant frequency and the dominant frequency; or locating a hydrocarbon reservoir in the region of interest using the at least one measure of energy decay below the dominant frequency and the at least one measure of energy decay above dominant frequency; or and locating a hydrocarbon reservoir in the region of interest using the at least one measure of energy decay below the dominant frequency and the dominant frequency; or locating a hydrocarbon reservoir in the region of interest using the at least one measure of spectral shape and the dominant frequency.
摘要:
MOSFET devices for RF applications that use a trench-gate in place of the lateral gate conventionally used in lateral MOSFET devices. A trench-gate provides devices with a single, short channel for high frequency gain. Embodiments of the present invention provide devices with an asymmetric oxide in the trench gate, as well as LDD regions that lower the gate-drain capacitance for improved RF performance. Refinements to these TG-LDMOS devices include placing a source-shield conductor below the gate and placing two gates in a trench-gate region. These improve device high-frequency performance by decreasing gate-to-drain capacitance. Further refinements include adding a charge balance region to the LDD region and adding source-to-substrate or drain-to-substrate vias.
摘要:
In accordance with an embodiment of the present invention, a MOSFET includes a first semiconductor region having a first surface, a first insulation-filled trench region extending from the first surface into the first semiconductor region, and strips of semi-insulating material along the sidewalls of the first insulation-filled trench region. The strips of semi-insulating material may be insulated from the first semiconductor region.
摘要:
A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region. The active trench, which includes sidewalls and bottom lined with dielectric material, is substantially filled with a first conductive layer and a second conductive layer. The second conductive layer forms a gate electrode and is disposed above the first conductive layer and is separated from the first conductive layer by an inter-electrode dielectric material. The device also includes source regions having the first conductivity type formed inside the well region and adjacent the active trench and a charge control trench that extends deeper into the drift region than the active trench and is substantially filled with material to allow for vertical charge control in the drift region. The charge control trench can be lined with a layer of dielectric material and substantially filled with conductive material. The active trench can include a second shield electrode made of conductive material disposed below the first shield electrode. The first conductive layer inside the active trench can form a secondary gate electrode that is configured to be electrically biased to a desired potential. The semiconductor device can also include a Schottky structure formed between the charge control trench and a second adjacent charge control trench.
摘要:
MOSFET devices for RF applications that use a trench-gate in place of the lateral gate conventionally used in lateral MOSFET devices. A trench-gate provides devices with a single, short channel for high frequency gain. Embodiments of the present invention provide devices with an asymmetric oxide in the trench gate, as well as LDD regions that lower the gate-drain capacitance for improved RF performance. Refinements to these TG-LDMOS devices include placing a source-shield conductor below the gate and placing two gates in a trench-gate region. These improve device high-frequency performance by decreasing gate-to-drain capacitance. Further refinements include adding a charge balance region to the LDD region and adding source-to-substrate or drain-to-substrate vias.
摘要:
A method of manufacturing a semiconductor device having a charge control trench and an active control trench with a thick oxide bottom includes forming a drift region, a well region extending above the drift region, an active trench extending through the well region and into the drift region, a charge control trench extending deeper into the drift region than the active trench, an oxide film that fills the active trench, the charge control trench and covers a top surface of the substrate, an electrode in the active trench, and source regions. The method also includes etching the oxide film off the top surface of the substrate and inside the active trench to leave a substantially flat layer of thick oxide having a target thickness at the bottom of the active trench.
摘要:
A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region. The active trench, which includes sidewalls and bottom lined with dielectric material, is substantially filled with a first conductive layer and a second conductive layer. The second conductive layer forms a gate electrode and is disposed above the first conductive layer and is separated from the first conductive layer by an inter-electrode dielectric material. The device also includes source regions having the first conductivity type formed inside the well region and adjacent the active trench and a charge control trench that extends deeper into the drift region than the active trench and is substantially filled with material to allow for vertical charge control in the drift region. The charge control trench can be lined with a layer of dielectric material and substantially filled with conductive material. The active trench can include a second shield electrode made of conductive material disposed below the first shield electrode. The first conductive layer inside the active trench can form a secondary gate electrode that is configured to be electrically biased to a desired potential. The semiconductor device can also include a Schottky structure formed between the charge control trench and a second adjacent charge control trench.
摘要:
In accordance with an embodiment of the present invention, a MOSFET includes at least two insulation-filled trench regions laterally spaced in a first semiconductor region to form a drift region therebetween, and at least one resistive element located along an outer periphery of each of the two insulation-filled trench regions. A ratio of a width of each of the insulation-filled trench regions to a width of the drift region is adjusted so that an output capacitance of the MOSFET is minimized.
摘要:
A support for an electric heating element comprises a former of generally cylindrical shape, made of a heat resisting material and having a longitudinal core from which extend spaced ribs that support an outer wall. Portions of the outer wall and of the ribs are omitted along a helical path around the core to provide a mount for an electric heating element. A heating element assembly including the support and the heating element is mounted in a hot air gun.
摘要:
A method can include forming a drift region, forming a well region above the drift region, and forming an active trench extending through the well region and into the drift region. The method can include forming a first source region in contact with a first sidewall of the active trench and a second source region in contact with a second sidewall of the active trench. The method also includes forming a charge control trench where the charge control trench is aligned parallel to the active trench and laterally separated from the active trench by a mesa region, and where the portion of the well region is in contact with the charge control trench and excludes any source region. The method also includes forming an oxide along a bottom of the active trench having a thickness greater than a thickness of an oxide along the first sidewall of the active trench.