Abstract:
An optical assembly includes a waveguide assembly and an optical coupling element. The waveguide assembly includes a core, a cladding portion, and, preferably, at least two waveguide core fiducials, the at least two waveguide core fiducials and the core being lithographically formed substantially simultaneously in a substantially coplanar layer. The core and the at least two waveguide core fiducials are formed in a predetermined relationship with the cladding portion. The optical coupling element (for example, a lens array or mechanical transfer (MT) ferrule), includes an optical element and, preferably, at least two alignment features associated with the optical element, the at least two alignment features being mated with the at least two waveguide core fiducials to accurately position the optical element with respect to the core in an X-Y plane. A method of alignment is also provided.
Abstract:
An optical assembly includes a waveguide assembly and an optical coupling element. The waveguide assembly includes a core, a cladding portion, and, preferably, at least two waveguide core fiducials, the at least two waveguide core fiducials and the core being lithographically formed substantially simultaneously in a substantially coplanar layer. The core and the at least two waveguide core fiducials are formed in a predetermined relationship with the cladding portion. The optical coupling element (for example, a lens array or mechanical transfer (MT) ferrule), includes an optical element and, preferably, at least two alignment features associated with the optical element, the at least two alignment features being mated with the at least two waveguide core fiducials to accurately position the optical element with respect to the core in an X-Y plane A method of alignment is also provided.
Abstract:
An optical assembly includes a waveguide assembly and an optical coupling element. The waveguide assembly includes a core, a cladding portion, and, preferably, at least two waveguide core fiducials, the at least two waveguide core fiducials and the core being lithographically formed substantially simultaneously in a substantially coplanar layer. The core and the at least two waveguide core fiducials are formed in a predetermined relationship with the cladding portion. The optical coupling element (for example, a lens array or mechanical transfer (MT) ferrule), includes an optical element and, preferably, at least two alignment features associated with the optical element, the at least two alignment features being mated with the at least two waveguide core fiducials to accurately position the optical element with respect to the core in an X-Y plane. A method of alignment is also provided.
Abstract:
An optoelectronic device includes a substrate having a surface, a metallic coupling structure deposited on the surface of the substrate, the metallic coupling structure having a port and a waveguide interface portion with at least two waveguide interface portion sides, and a dielectric waveguide, the dielectric waveguide having a coupling interface portion deposited adjacent the at least two waveguide interface portion sides of the waveguide interface portion of the metallic coupling structure. It is possible to form high speed, CMOS-process-compatible, low power optical-electrical and electrical-optical conversion devices (i.e. optical detectors, modulators, and frequency mixer's) on the top of the semiconductor chip, after the rest of the wiling has been laid down.
Abstract:
Apparatus and a method for performing high resolution optical imaging in the near infrared of internal features of semiconductor wafers uses an optical device made from a material having a high index of refraction and held in very close proximity to the wafer. The optical device may either be a prism or a plano-convex lens. The plano-convex lens may be held in contact with the wafer or separated from the wafer via an air bearing or an optical coupling fluid to allow the sample to be navigated beneath the lens. The lens may be used in a number of optical instruments such as a bright field microscope, a Schlieren microscope, a dark field microscope, a Linnik interferometer, a Raman spectroscope and an absorption spectroscope.
Abstract:
A system and method for detecting information signals by automatically thresholding input signals in the presence of noise of accurately known statistics concerning a predetermined acceptable false alarm rate data. A first subcircuit including a comparator and a servo amplifier is used for setting and adjusting a threshold value signal based on the input signal and the statistics concerning a predetermined acceptable false alarm rate. A second comparator is used for comparing the threshold value signal to the input signal, and outputting a signal corresponding to the difference therebetween.
Abstract:
A bright-field, particle position determining optical system is disclosed that uses both phase shift and extinction signals to determine particle trajectories. In a first embodiment, a pair of orthogonally polarized beams are positioned along an axis that intersects a particle's flow path at an acute angle. An optical system recombines the beams after they exit the flow path, the combined beams manifesting an elliptical polarization if a particle intersects one of the beams. Bright field detectors detect polarization components of the combined beam, provide a phase shift signal between the beam's orthogonal components and provide corresponding signals to a processor. The processor determines a signal asymmetry from the phase shift signal that is indicative of a particle's position in the flow path. Another embodiment of the invention examines a signal resulting from the beam's phase shift and determines a correction factor that is dependent upon the distance of the particle from the focal plane of the beams. Another embodiment employs a dithering system for cyclically moving one or more optical beams across a particle to further enable its trajectory or position to be determined.
Abstract:
A hybrid superconductor-optical quantum repeater is provided. The hybrid superconductor-optical quantum repeater comprises an optical subsystem configured to receive an optical signal via an optical channel and a superconductor subsystem coupled to the optical subsystem. The optical subsystem and superconductor subsystem are coupled to one another via a microwave transmission medium. The optical subsystem is configured to receive an optical signal via the optical channel and down-convert a photon of the optical signal to a microwave photon in a microwave output signal that is output to the superconductor subsystem via the microwave transmission medium. The superconductor subsystem stores a quantum state of the microwave photon and transmits the microwave photon along an output channel from the superconductor subsystem.
Abstract:
A single-mode optical waveguide with a core, surrounded by a cladding consisting of an inner soft layer and an outer harder layer is described. The outer layer has a grating structure on its inner surface, whose spatial frequency is the same as that of the guided mode. The thickness of the inner cladding is sufficient to keep the grating outside the mode field in undeformed regions of the waveguide, so that normally no out-coupling of the light results. Connections are made by crossing two such waveguides at an angle and pressing them together. This results in deformation of the two waveguides such that the gratings are brought into proximity with the cores. Light is coupled out of one waveguide and into the other in the deformed region, resulting in a self-aligning optical connection. The out-coupled light propagates normal to the waveguide axis, so errors in the crossing angle cause little change in efficiency. Because the cladding system is sufficiently resilient to recover after deformation, the connection is remakeable.
Abstract:
An inexpensive eye tracking system requires no head gear. The eye tracking system uses the interference fringes between the corneal glint and the "red eye" retinal reflection to obtain an angularly resolved, background-immune eye point signal for use as a pointing device for personal computers. Tunable (eye safe) diode laser spectroscopy is used to measure the period and amplitude of the Fabry-Perot fringes caused by the interference between the corneal glint and the "red" reflection form the retina.