摘要:
A lead frame support plate 200 and a window clamp 400 for wire bonding machines are disclosed herein. In a described embodiment, the lead frame support plate 200 includes a network of suction grooves 218 provided on a support surface 212, each suction groove 218 being arranged to be in fluid communication with at least a vacuum hole 216 to enable a suction force to be created, in response to a vacuum force, along the network of suction grooves for holding a lead frame against the support surface. A window clamp 400 having slots for compensating deformation of the window clamp and a method of fabricating the lead frame support plate are also disclosed.
摘要:
In a nonvolatile memory array that stores randomized data, the program level—the number of states per cell stored in a population of memory cells—may be determined from the aggregated results of a single read step. A circuit for aggregating binary results of a read step includes parallel transistors with control gates connected to the data latches holding the binary results, so that current flow through the combined transistors depends on the binary results.
摘要:
Non-volatile storage devices and techniques for operating non-volatile storage are described herein. One embodiment includes accessing “n” pages of data to be programmed into a group of non-volatile storage elements. The “n” pages are mapped to a data state for each of the non-volatile storage elements based on a coding scheme that evenly distributes read errors across the “n” pages of data. Each of the non-volatile storage elements in the group are programmed to a threshold voltage range based on the data states to which the plurality of pages have been mapped. The programming may include programming the “n” pages simultaneously. In one embodiment, mapping the plurality of pages is based on a coding scheme that distributes a significant failure mode (for example, program disturb errors) to a first of the pages and a significant failure mode (for example, data retention errors) to a second of the pages.
摘要:
A corrugated settling cup (5) is provided, wherein the cup has a cup body, an opening and a location step (52) are provided at the bottom (55) of the cup body, several location holes (53) are formed at the top of the location step (52), location projections (54) corresponding to the location holes (53) are formed at the bottom (55) of the corrugated settling cup (5), wherein the external profile of the corrugated settling cup body rises along the axial direction in a corrugated shape. A multi-cup uniform flux gas anchor is provided, wherein the gas anchor includes a central pipe (7), several corrugated settling cups (5), several settling cups protection bodies (6) and a well-flushing valve (9), wherein the external profile of the corrugated settling cup body rises along the axial direction in a corrugated shape.
摘要:
Techniques and corresponding circuitry are presented for the detection of broken wordlines in a memory array. An “inter-word-line” comparison where the program loop counts of different word-lines are compared in order to determine whether a word-line may be defective. The number of programming pulses needed for the cells along a word-line WLn is compared to the number needed for a preceding word-line, such as WLn or WL(n−1), to see whether it exceeds this earlier value by a threshold value. If the word-line requires an excessive number of pulses, relative the earlier word-line, to complete programming, it is treated as defective.
摘要:
Structures and techniques are disclosed for reducing bit line to bit line capacitance in a non-volatile storage system. The bit lines are formed at a 4ƒpitch in each of two separate metal layers, and arranged to alternate between each of the layers. In an alternative embodiment, shields are formed between each of the bit lines on each metal layer.
摘要:
Techniques and corresponding circuitry are presented for the detection of broken wordlines in a memory array. One example considers an “inter-word-line” comparison where the program loop counts of different word-lines are compared in order to determine whether a word-line may be defective. For example, the number of programming pulses needed for the cells along a word-line WLn is compared to the number needed for a preceding word-line, such as WLn or WL(n−1), to see whether it exceeds this earlier value by a threshold value. If the word-line requires an excessive number of pulses, relative the earlier word-line, to complete programming, it is treated as defective.
摘要:
To program a set of non-volatile storage elements, a set of programming pulses are applied to the control gates (or other terminals) of the non-volatile storage elements. The programming pulses have a constant pulse width and increasing magnitudes until a maximum voltage is reached. At that point, the magnitude of the programming pulses stops increasing and the programming pulses are applied in a manner to provide varying time duration of the programming signal between verification operations. In one embodiment, for example, after the pulses reach the maximum magnitude the pulse widths are increased. In another embodiment, after the pulses reach the maximum magnitude multiple program pulses are applied between verification operations.
摘要:
Data verification in a memory device using a portion of a data retention margin is provided. A bit count is read from the region to determine whether errors will result in the memory. A read in one or more retention margin portions is performed after the normal program verify sequence and if the number of bits in these regions is more than a pre-set the memory will fail verify status. A method of verifying data in a memory device includes the steps of: defining an retention margin between adjacent data thresholds; programming the memory device with data; determining whether bits are present in the data retention margin; and if the number of bits in the retention margin exceeds a threshold, generating an error.
摘要:
A semi-passive radio frequency identification (RFID) tag being coupled to a battery providing a battery voltage for powering a part of the circuitry of the RFID tag includes an RF communication block receiving and transmitting RF signals, a sensor block including a frequency ratio digitizing temperature sensor for alternately measuring the ambient temperature and the battery voltage, and a control logic block in communication with the RF communication block and the sensor block. The control logic controls the operation of the RF communication block and the sensor block and stores temperature and voltage measurement data generated by the sensor block. In one embodiment, the control logic block of the RFID tag operates based on a system clock and the sensor block provides a reference clock to the control logic block for use in calibrating the system clock of the control logic block.