摘要:
Methods for manufacturing a semiconductor device include forming a seed layer containing a silicon material on a substrate. An amorphous silicon layer containing amorphous silicon material is formed on the seed layer. The amorphous silicon layer is doped with an impurity. A laser beam is irradiated onto the amorphous silicon layer to produce a phase change of the amorphous silicon layer and change the amorphous silicon layer into a single-crystal silicon layer based on the seed layer.
摘要:
Methods of fabricating a semiconductor device are provided. A semiconductor substrate is provided that includes a single crystalline structure within at least a defined region thereof. A thin layer is formed on the semiconductor substrate. The thin layer is patterned to form a plurality of spaced apart field structures and to expose therebetween portions of the semiconductor substrate having the single crystalline structure. A non-crystalline layer is formed on the exposed portions of the semiconductor substrate having the single crystalline structure. The non-crystalline layer is planarized to expose upper surfaces of the field structures and define non-crystalline active structures from the non-crystalline layer between the field structures. A laser beam is generated that heats the non-crystalline active structures to change them into single crystalline active structures having substantially the same single crystalline structure as the defined region of the semiconductor substrate.
摘要:
Integrated circuit devices are provided including a first single-crystalline layer and an insulating layer pattern on the first single-crystalline layer. The insulating layer pattern has an opening therein that partially exposes the first single-crystalline layer. A seed layer is in the opening. A second single-crystalline layer is on the insulating layer pattern and the seed layer. The second single-crystalline layer has a crystalline structure substantially the same as that of the seed layer. A transcription-preventing pattern is on the second single-crystalline layer and a third single-crystalline layer on the transcription-preventing pattern and the second single-crystalline layer. The transcription-preventing pattern is configured to limit transcription of defective portions in the second single-crystalline layer into the third single-crystalline layer.
摘要:
In a method of manufacturing a semiconductor device, a string structure including a selection transistor and a memory cell on a substrate. An insulation layer pattern is formed on the substrate to cover the string structure. The insulation layer pattern includes at least one opening exposing a portion of the substrate adjacent to the selection transistor. A seed layer including a single-crystalline material is formed in the opening. An amorphous thin film including an amorphous material is formed on the insulation layer pattern and the seed layer. The amorphous thin film is transformed into a single-crystalline thin film, using the single-crystalline material in the seed layer as a seed during a phase transition of the amorphous thin film, to form a channel layer on the insulation layer pattern and the seed layer. Therefore, the semiconductor device including the channel layer having the single-crystalline thin film may be manufactured.
摘要:
In a method of manufacturing a semiconductor device, a string structure including a selection transistor and a memory cell on a substrate. An insulation layer pattern is formed on the substrate to cover the string structure. The insulation layer pattern includes at least one opening exposing a portion of the substrate adjacent to the selection transistor. A seed layer including a single-crystalline material is formed in the opening. An amorphous thin film including an amorphous material is formed on the insulation layer pattern and the seed layer. The amorphous thin film is transformed into a single-crystalline thin film, using the single-crystalline material in the seed layer as a seed during a phase transition of the amorphous thin film, to form a channel layer on the insulation layer pattern and the seed layer. Therefore, the semiconductor device including the channel layer having the single-crystalline thin film may be manufactured.
摘要:
Integrated circuit devices are provided including a first single-crystalline layer and an insulating layer pattern on the first single-crystalline layer. The insulating layer pattern has an opening therein that partially exposes the first single-crystalline layer. A seed layer is in the opening. A second single-crystalline layer is on the insulating layer pattern and the seed layer. The second single-crystalline layer has a crystalline structure substantially the same as that of the seed layer. A transcription-preventing pattern is on the second single-crystalline layer and a third single-crystalline layer on the transcription-preventing pattern and the second single-crystalline layer. The transcription-preventing pattern is configured to limit transcription of defective portions in the second single-crystalline layer into the third single-crystalline layer.
摘要:
Methods of fabricating a semiconductor device are provided. A semiconductor substrate is provided that includes a single crystalline structure within at least a defined region thereof. A thin layer is formed on the semiconductor substrate. The thin layer is patterned to form a plurality of spaced apart field structures and to expose therebetween portions of the semiconductor substrate having the single crystalline structure. A non-crystalline layer is formed on the exposed portions of the semiconductor substrate having the single crystalline structure. The non-crystalline layer is planarized to expose upper surfaces of the field structures and define non-crystalline active structures from the non-crystalline layer between the field structures. A laser beam is generated that heats the non-crystalline active structures to change them into single crystalline active structures having substantially the same single crystalline structure as the defined region of the semiconductor substrate.
摘要:
Integrated circuit devices are provided including a first single-crystalline layer and an insulating layer pattern on the first single-crystalline layer. The insulating layer pattern has an opening therein that partially exposes the first single-crystalline layer. A seed layer is in the opening. A second single-crystalline layer is on the insulating layer pattern and the seed layer. The second single-crystalline layer has a crystalline structure substantially the same as that of the seed layer. A transcription-preventing pattern is on the second single-crystalline layer and a third single-crystalline layer on the transcription-preventing pattern and the second single-crystalline layer. The transcription-preventing pattern is configured to limit transcription of defective portions in the second single-crystalline layer into the third single-crystalline layer.
摘要:
Methods for manufacturing a semiconductor device include forming a seed layer containing a silicon material on a substrate. An amorphous silicon layer containing amorphous silicon material is formed on the seed layer. The amorphous silicon layer is doped with an impurity. A laser beam is irradiated onto the amorphous silicon layer to produce a phase change of the amorphous silicon layer and change the amorphous silicon layer into a single-crystal silicon layer based on the seed layer.
摘要:
Microelectronic packages are fabricated by stacking integrated circuits upon one another. Each integrated circuit includes a semiconductor layer having microelectronic devices and a wiring layer on the semiconductor layer having wiring that selectively interconnects the microelectronic devices. After stacking, a via is formed that extends through at least two of the integrated circuits that are stacked upon one another. Then, the via is filled with conductive material that selectively electrically contacts the wiring. Related microelectronic packages are also described.