Abstract:
Light-emitting devices and displays with improved performance are disclosed. A light-emitting device includes an emissive material disposed between a first electrode, and a second electrode. Various embodiments include a device having a peak external quantum efficiency of at least about 2.2%; a device that emits light having a CIE color coordinate of x greater than 0.63; a device having an external quantum efficiency of at least about 2.2 percent when measured at a current density of 5 mA/cm2. Also disclosed is a light-emitting device comprising a plurality of semiconductor nanocrystals capable of emitting red light upon excitation, wherein the device has a peak luminescent efficiency of at least about 1.5 lumens per watt. Also disclosed is a light-emitting device comprising a plurality of semiconductor nanocrystals capable of emitting red light upon excitation, wherein the device has a luminescent efficiency of at least about 1.5 lumens per watt when measured at a current density of 5 milliamps/square centimeter. Also disclosed is a light-emitting device comprising a plurality of semiconductor nanocrystals capable of emitting green light upon excitation, wherein the device has a peak external quantum efficiency of at least about 1.1 percent. Further disclosed is a light-emitting device comprising a plurality of semiconductor nanocrystals, wherein the device has a luminescent efficiency of at least about 3 lumens per watt when measured at a current density of 5 mA/cm2. Further disclosed is a light-emitting device comprising a plurality of semiconductor nanocrystals capable of emitting green light upon excitation, wherein the device has an external quantum efficiency of at least about 2% when measured at a current density of 5 mA/cm2. Other light-emitting devices and displays with improved performance are disclosed. Also disclosed are methods for preparing and for purifying semiconductor nanocrystals.
Abstract translation:公开了具有改进性能的发光装置和显示器。 发光装置包括设置在第一电极和第二电极之间的发光材料。 各种实施方案包括具有至少约2.2%的峰值外部量子效率的器件; 发射具有x大于0.63的CIE色坐标的光的装置; 当以5mA / cm 2的电流密度测量时,具有至少约2.2%的外部量子效率的器件。 还公开了包括能够在激发时发射红光的多个半导体纳米晶体的发光器件,其中该器件具有至少约1.5流明/瓦特的峰值发光效率。 还公开了一种发光器件,其包括能够在激发时发射红光的多个半导体纳米晶体,其中当以5毫安/平方厘米的电流密度测量时,该器件具有至少约1.5流明/瓦特的发光效率。 还公开了一种发光器件,其包括在激发时能够发射绿光的多个半导体纳米晶体,其中该器件具有至少约1.1%的峰值外部量子效率。 还公开了包括多个半导体纳米晶体的发光器件,其中当以5mA / cm 2的电流密度测量时,该器件具有至少约3流明/瓦的发光效率。 进一步公开的是一种发光器件,其包括能够在激发时发出绿光的多个半导体纳米晶体,其中当以5mA / cm 2的电流密度测量时,该器件具有至少约2%的外部量子效率。 公开了其他具有改进性能的发光装置和显示器。 还公开了制备和纯化半导体纳米晶体的方法。
Abstract:
A semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with an improved photoluminescence quantum efficiency. Also disclosed are populations of semiconductor nanocrystals, compositions and devices including a semiconductor nanocrystal capable of emitting light with an improved photoluminescence quantum efficiency. In one embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light upon excitation with a photoluminescence quantum efficiency greater than about 65%. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising zinc, cadmium, and sulfur and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material. In a further embodiment, a semiconductor nanocrystal includes a core comprises a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material comprising at least three chemical elements, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation. In a further embodiment, a semiconductor nanocrystal including a core comprises a first semiconductor material comprising zinc, cadmium, and selenium and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation.
Abstract:
The present inventions relate to optical components which include quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles include a ligand attached to a surface thereof, the ligand being represented by the formula: X-Sp-Z, wherein: X represents a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, an other nitrogen containing group, a carboxylic acid group, a phosphonic or arsonic acid group, a phosphinic or arsinic acid group, a phosphate or arsenate group, a phosphine or arsine oxide group; Sp represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; and Z represents: (i) a reactive group capable of communicating specific chemical properties to the nanocrystal as well as provide specific chemical reactivity to the surface of the nanocrystal, and/or (ii) a group that is cyclic, halogenated, or polar a-protic. Compositions, systems, kits, films, inks, and TFEL lamps are also disclosed.
Abstract:
A light emitting device including a light emitting element having a light emitting surface and an optical component comprising an optical material comprising quantum dots sealed within an optically transparent structural member, the optical component being coupled to the light emitting element by a thermally conductive member is disclosed. A light emitting device including a light emitting element having a light emitting surface and an optical component comprising an optical material comprising quantum dots sealed within a structural member comprising single crystal sapphire, the optical component being coupled to the light emitting element by a thermally conductive member, is also disclosed.
Abstract:
A nanocrystal comprising a semiconductor material comprising one or more elements of Group IIIA of the Periodic Table of Elements and one or more elements of Group VA of the Periodic Table of Elements, wherein the nanocrystal is capable of emitting light having a photoluminescence quantum efficiency of at least about 30% upon excitation. Also disclosed is a nanocrystal including a core comprising a first semiconductor material comprising one or more elements of Group IIIA of the Periodic Table of Elements and one or more elements of Group VA of the Periodic Table of Elements, and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the nanocrystal is capable of emitting light having a photoluminescence quantum efficiency of at least about 30% upon excitation. Also disclosed is a nanocrystal comprising a nanocrystal core and a shell comprising a semiconductor material disposed on at least a portion of the nanocrystal core, wherein the semiconductor material comprises at least three chemical elements and is obtainable by a process comprising adding a precursor for at least one of the chemical elements of the semiconductor material from a separate source to a nanocrystal core while simultaneously adding amounts of precursors for the other chemical elements of the semiconductor material. A population of nanocrystals, method for preparing nanocrystals, compositions, and devices including nanocrystals are also disclosed.
Abstract:
A composition useful for altering the wavelength of visible or invisible light is disclosed. The composition comprising a solid host material and quantum confined semiconductor nanoparticles, wherein the nanoparticles are included in the composition in amount in the range from about 0.001 to about 15 weight percent based on the weight of the host material. The composition can further include scatterers. An optical component including a waveguide component and quantum confined semiconductor nanoparticles is also disclosed. A device including an optical component is disclosed. A system including an optical component including a waveguide component and quantum confined semiconductor nanoparticles and a light source optically coupled to the waveguide component is also disclosed. A decal, kit, ink composition, and method are also disclosed. A TFEL including quantum confined semiconductor nanoparticles on a surface thereof is also disclosed.
Abstract:
A semiconductor nanocrystal capable of emitting blue light upon excitation. Also disclosed are devices, populations of semiconductor nanocrystals, and compositions including a semiconductor nanocrystal capable of emitting blue light upon excitation. In one embodiment, a semiconductor nanocrystal capable of emitting blue light including a maximum peak emission at a wavelength not greater than about 470 nm with a photoluminescence quantum efficiency greater than about 65% upon excitation. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting blue light with a photoluminescence quantum efficiency greater than about 65% upon excitation. In a further embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material comprising at least three chemical elements, wherein the semiconductor nanocrystal is capable of emitting light including a maximum peak emission in the blue region of the spectrum upon excitation.
Abstract:
A method of making a device comprises forming a layer comprising quantum dots over a substrate including a first electrode, fixing the layer comprising quantum dots formed over the substrate, and exposing at least a portion of, and preferably all, exposed surfaces of the fixed layer comprising quantum dots to small molecules. The layer comprising quantum dots can be preferably fixed in the absence or substantial absence of oxygen. Also disclosed is a method of making a device comprises forming a layer comprising quantum dots over a substrate including a first electrode, exposing the layer comprising quantum dots to small molecules and light flux. Also disclosed is a method of making a film including a layer comprising quantum dots, the method comprising forming a layer comprising quantum dots over a carrier substrate, fixing the layer comprising quantum dots formed over the carrier substrate, and exposing at least a portion of, and preferably all, exposed surfaces of the fixed layer comprising quantum dots to small molecules. The layer comprising quantum dots can be preferably fixed in the absence or substantial absence of oxygen. Also disclosed is a method of preparing a device component including a layer comprising quantum dots, the method comprising forming a layer comprising quantum dots over a layer comprising a charge transport material, exposing the layer comprising quantum dots to small molecules and light flux. Devices, device components, and films are also disclosed.
Abstract:
A semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with an improved photoluminescence quantum efficiency. Also disclosed are populations of semiconductor nanocrystals, compositions and devices including a semiconductor nanocrystal capable of emitting light with an improved photoluminescence quantum efficiency. In one embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light upon excitation with a photoluminescence quantum efficiency greater than about 65%. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising zinc, cadmium, and sulfur and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material. In a further embodiment, a semiconductor nanocrystal includes a core comprises a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material comprising at least three chemical elements, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation. In a further embodiment, a semiconductor nanocrystal including a core comprises a first semiconductor material comprising zinc, cadmium, and selenium and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation.
Abstract:
A nanoparticle including an inorganic core comprising at least one metal and/or at least one semi-conductor compound comprising at least one metal includes a coating or shell disposed over at least a portion of a surface of the core. The coating can include one or more layers. Each layer of the coating can comprise a metal and/or at least one semiconductor compound. The nanoparticle further includes a ligand attached to a surface of the coating. The ligand is represented by the formula: X-Sp-Z, wherein X represents, e.g., a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, a phosphonic or arsonic acid group, a phosphinic or arsinic acid group, a phosphate or arsenate group, a phosphine or arsine oxide group; Sp represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; and Z represents: (i) a reactive group capable of communicating specific chemical properties to the nanocrystal as well as provide specific chemical reactivity to the surface of the nanocrystal, and/or (ii) a group that is cyclic, halogenated, or polar a-protic. In certain embodiments, at least two chemically distinct ligands are attached to an surface of the coating, wherein the at least two ligands (I and II) are represented by the formula: X-Sp-Z. In ligand (I) X represents a phosphonic, phosphinic, or phosphategroup and in ligand (II) X represents a primary or secondary amine, or an imidizole, or an amide; In both ligands (I) and (II) Sp, which can be the same or different in the two compounds, represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; Z, which can be the same or different in the two compounds, is a group chosen from among groups capable of communicating specific chemical properties to the nanoparticle as well as provide specific chemical reactivity to the surface of the nanoparticle. In preferred embodiments, the nanoparticle includes a core comprising a semiconductor material.