Abstract:
A method of thermal mitigation in a device having a plurality of non-real-time processing units (PUs) and a plurality of real-time PUs, including connecting each of the plurality of real-time PUs and the plurality of non-real-time PUs to a first power supply, and performing thermal mitigation. Performing thermal mitigation includes disconnecting each of the plurality of non-real-time PUs except one of the plurality of non-real-time PUs from the first power supply resulting in an active non-real-time PU, and connecting a second power supply that derives power from the first power supply to the active non-real-time PU, wherein a voltage supplied by the second power supply is less than a voltage supplied by the first power supply.
Abstract:
Methods, systems, and circuits for preserving state information during power saving operations are disclosed. One example embodiment includes a circuit having a processing core, where the processing core includes logic processing circuits as well as circuits (e.g., flip-flops registers) that are used to store state information in the processing core. The logic processing circuits have power connections to a power rail that are subject to a switch, which can disconnect the power connections from the power rail. The circuits that are used to store state information have different power connections that are subject to a different switch. Therefore, the logic processing circuits and the state information circuits can be separately power-collapsed.
Abstract:
Methods, systems, and circuits for preserving state information during power saving operations are disclosed. One example embodiment includes a circuit having a processing core, where the processing core includes logic processing circuits as well as circuits (e.g., flip-flops registers) that are used to store state information in the processing core. The logic processing circuits have power connections to a power rail that are subject to a switch, which can disconnect the power connections from the power rail. The circuits that are used to store state information have different power connections that are subject to a different switch. Therefore, the logic processing circuits and the state information circuits can be separately power-collapsed.
Abstract:
A method and an apparatus for providing a power grid are provided. The apparatus includes a plurality of memory units comprising at least one SoC memory and at least one cache memory. The apparatus includes a first subsystem coupled to the at least one SoC memory associated with a first power domain. The apparatus further includes a second subsystem coupled to the at least one cache memory associated with a second power domain. The second subsystem may be a CPU subsystem. Because the first power domain sources power from a shared power source, the first power domain may operate at a voltage level that is higher than the operation of memory circuits requires. By moving the at least one cache memory from the first power domain to the second power domain, LDO efficiency loss for components in the first power domain may be reduced.
Abstract:
A method of thermal mitigation in a device having a plurality of non-real-time processing units (PUs) and a plurality of real-time PUs, including connecting each of the plurality of real-time PUs and the plurality of non-real-time PUs to a first power supply, and performing thermal mitigation. Performing thermal mitigation includes disconnecting each of the plurality of non-real-time PUs except one of the plurality of non-real-time PUs from the first power supply resulting in an active non-real-time PU, and connecting a second power supply that derives power from the first power supply to the active non-real-time PU, wherein a voltage supplied by the second power supply is less than a voltage supplied by the first power supply.
Abstract:
A method of thermal mitigation in a device having a plurality of non-real-time processing units (PUs) and a plurality of real-time PUs, including connecting each of the plurality of real-time PUs and the plurality of non-real-time PUs to a first power supply, and performing thermal mitigation. Performing thermal mitigation includes disconnecting each of the plurality of non-real-time PUs except one of the plurality of non-real-time PUs from the first power supply resulting in an active non-real-time PU, and connecting a second power supply that derives power from the first power supply to the active non-real-time PU, wherein a voltage supplied by the second power supply is less than a voltage supplied by the first power supply.
Abstract:
A method of thermal mitigation in a device having a plurality of non-real-time processing units (PUs) and a plurality of real-time PUs, including connecting each of the plurality of real-time PUs and the plurality of non-real-time PUs to a first power supply, and performing thermal mitigation. Performing thermal mitigation includes disconnecting each of the plurality of non-real-time PUs except one of the plurality of non-real-time PUs from the first power supply resulting in an active non-real-time PU, and connecting a second power supply that derives power from the first power supply to the active non-real-time PU, wherein a voltage supplied by the second power supply is less than a voltage supplied by the first power supply.