Abstract:
A device that includes a region comprising a heat generating device, and an energy harvesting device coupled to the region comprising the heat generating device. The energy harvesting device includes a first thermal conductive layer, a thermoelectric generator (TEG) coupled to the first thermal conductive layer, and a second thermal conductive layer coupled the thermoelectric generator (TEG) such that the thermoelectric generator (TEG) is between the first thermal conductive layer and the second thermal conductive layer. In some implementations, the energy harvesting device includes an insulation layer.
Abstract:
A device that includes a region comprising an integrated device, and a heat dissipating device coupled to the region comprising the integrated device. The heat dissipating device is configured to dissipate heat away from the region. The heat dissipating device includes a fluid, an evaporator configured to evaporate the fluid, a condenser configured to condense the fluid, an inner wall coupled to the evaporator and the condenser, an outer shell encapsulating the fluid, the evaporator, the condenser and the inner wall, an evaporation portion configured to channel an evaporated fluid from the evaporator to the condenser, wherein the evaporation portion is at least partially defined by the inner wall, and a collection portion configured to channel a condensed fluid from the condenser to the evaporator, wherein the collection portion is at least partially defined by the inner wall. The heat dissipating device may be a multi-phase heat dissipating device.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for cooling electronic devices using thermosiphons having one or more micro-pumps at least partially disposed therein. A provided thermosiphon generally includes a fluid; a first evaporator configured to evaporate the fluid, wherein the first evaporator has an inlet and an outlet; a first condenser configured to condense the fluid, wherein the first condenser has an inlet and an outlet; a first channel coupled between the outlet of the first evaporator and the inlet of the first condenser; a second channel coupled between the outlet of the first condenser and the inlet of the first evaporator; and a first micro-pump located in the second channel and operable to pump the fluid in the second channel from the first condenser to the first evaporator.
Abstract:
An example heat-dissipating device with enhanced interfacial properties generally includes a first heat spreader configured to be thermally coupled to a region configured to generate heat, a second heat spreader, an interposer thermally coupled to at least one of the first heat spreader or the second heat spreader, at least one interfacial layer including a graphene material disposed on at least one surface of the interposer, and a phase change material disposed between the at least one interfacial layer and at least one of the first heat spreader or the second heat spreader and thermally coupled to at least one of the first heat spreader or the second heat spreader.
Abstract:
A device that includes a region comprising a heat generating device, and an energy harvesting device coupled to the region comprising the heat generating device. The energy harvesting device includes a first thermal conductive layer, a thermoelectric generator (TEG) coupled to the first thermal conductive layer, and a second thermal conductive layer coupled the thermoelectric generator (TEG) such that the thermoelectric generator (TEG) is between the first thermal conductive layer and the second thermal conductive layer. In some implementations, the energy harvesting device includes an insulation layer.
Abstract:
A device that includes a region comprising an integrated device, and a heat dissipating device coupled to the region comprising the integrated device. The heat dissipating device is configured to dissipate heat away from the region. The heat dissipating device includes a fluid, an evaporator configured to evaporate the fluid, a condenser configured to condense the fluid, an inner wall coupled to the evaporator and the condenser, an outer shell encapsulating the fluid, the evaporator, the condenser and the inner wall, an evaporation portion configured to channel an evaporated fluid from the evaporator to the condenser, wherein the evaporation portion is at least partially defined by the inner wall, and a collection portion configured to channel a condensed fluid from the condenser to the evaporator, wherein the collection portion is at least partially defined by the inner wall. The heat dissipating device may be a multi-phase heat dissipating device.
Abstract:
A device that includes a region comprising an integrated device, and a heat dissipating device coupled to the region comprising the integrated device. The heat dissipating device is configured to dissipate heat away from the region. The heat dissipating device includes a fluid, an evaporator configured to evaporate the fluid, a condenser configured to condense the fluid, an inner wall coupled to the evaporator and the condenser, an outer shell encapsulating the fluid, the evaporator, the condenser and the inner wall, an evaporation portion configured to channel an evaporated fluid from the evaporator to the condenser, wherein the evaporation portion is at least partially defined by the inner wall, and a collection portion configured to channel a condensed fluid from the condenser to the evaporator, wherein the collection portion is at least partially defined by the inner wall. The heat dissipating device may be a multi-phase heat dissipating device.
Abstract:
Some implementations provide a multi-layer heat dissipating device that includes a first heat spreader layer, a first support structure, and a second heat spreader layer. The first heat spreader layer includes a first spreader surface and a second spreader surface. The first support structure includes a first support surface and a second support surface. The first support surface of the first support structure is coupled to the second spreader surface of the first heat spreader. The second heat spreader layer includes a third spreader surface and a fourth spreader surface. The third spreader surface of the second heat spreader layer is coupled to the second support surface of the first support structure. In some implementations, the first support structure is a thermally conductive adhesive layer. In some implementations, the first heat spreader layer has a first thermal conductivity, and the first support structure has a second thermal conductivity.
Abstract:
Some implementations provide a multi-layer heat dissipating device that includes a first heat spreader layer, a first support structure, and a second heat spreader layer. The first heat spreader layer includes a first spreader surface and a second spreader surface. The first support structure includes a first support surface and a second support surface. The first support surface of the first support structure is coupled to the second spreader surface of the first heat spreader. The second heat spreader layer includes a third spreader surface and a fourth spreader surface. The third spreader surface of the second heat spreader layer is coupled to the second support surface of the first support structure. In some implementations, the first support structure is a thermally conductive adhesive layer. In some implementations, the first heat spreader layer has a first thermal conductivity, and the first support structure has a second thermal conductivity.
Abstract:
Some implementations provide a semiconductor package structure that includes a package substrate, a first package, an interposer coupled to the first package, and a first set of through via insert (TVI). The first set of TVI is coupled to the interposer and the package substrate. The first set of TVI is configured to provide heat dissipation from the first package. In some implementations, the semiconductor package structure further includes a heat spreader coupled to the interposer. The heat spreader is configured to dissipate heat from the first package. In some implementations, the first set of TVI is further configured to provide an electrical path between the first package and the package substrate. In some implementations, the first package is electrically coupled to the package substrate through the interposer and the first set of TVI. In some implementations, the first set of TVI includes a dielectric layer and a metal layer.