Abstract:
Cell power supply lines are arranged for memory cell columns, and adjust impedances or voltage levels of the cell power supply lines according to the voltage levels of bit lines in the corresponding columns, respectively. In the data write operation, the cell power supply line is forced into a floating state according to the bit line potential on a selected column and has the voltage level changed, and a latching capability of a selected memory cell is reduced to write data fast. Even with a low power supply voltage, a static semiconductor memory device that can stably perform write and read of data is implemented.
Abstract:
In an SOI substrate having a semiconductor layer formed on the semiconductor substrate via an insulating layer, a MISFET is formed in each of the semiconductor layer in an nMIS formation region and a pMIS formation region. In power feeding regions, the semiconductor layer and the insulating layer are removed. In the semiconductor substrate, a p-type semiconductor region is formed so as to include the nMIS formation region and one of the power feeding regions, and an n-type semiconductor region is formed so as to include a pMIS formation region and the other one of the power feeding regions. In the semiconductor substrate, a p-type well having lower impurity concentration than the p-type semiconductor region is formed so as to contain the p-type semiconductor region, and an n-type well having lower impurity concentration than the n-type semiconductor region is formed so as to contain the n-type semiconductor region.
Abstract:
Cell power supply lines are arranged for memory cell columns, and adjust impedances or voltage levels of the cell power supply lines according to the voltage levels of bit lines in the corresponding columns, respectively. In the data write operation, the cell power supply line is forced into a floating state according to the bit line potential on a selected column and has the voltage level changed, and a latching capability of a selected memory cell is reduced to write data fast. Even with a low power supply voltage, a static semiconductor memory device that can stably perform write and read of data is implemented.
Abstract:
Cell power supply lines are arranged for memory cell columns, and adjust impedances or voltage levels of the cell power supply lines according to the voltage levels of bit lines in the corresponding columns, respectively. In the data write operation, the cell power supply line is forced into a floating state according to the bit line potential on a selected column and has the voltage level changed, and a latching capability of a selected memory cell is reduced to write data fast. Even with a low power supply voltage, a static semiconductor memory device that can stably perform write and read of data is implemented.
Abstract:
An object of the present invention is to provide a semiconductor device having a fin-type transistor that is excellent in characteristics by forming a fin-shaped semiconductor portion and a gate electrode with high precision or by making improvement regarding variations in characteristics among elements. The present invention is a semiconductor device including a fin-shaped semiconductor portion having a source region formed on one side thereof and a drain region formed on the other side thereof, and a gate electrode formed between the source region and the drain region to surround the fin-shaped semiconductor portion with a gate insulating film interposed therebetween. One solution for solving the problem according to the invention is that the gate electrode uses a metal material or a silicide material that is wet etchable.
Abstract:
Cell power supply lines are arranged for memory cell columns, and adjust impedances or voltage levels of the cell power supply lines according to the voltage levels of bit lines in the corresponding columns, respectively. In the data write operation, the cell power supply line is forced into a floating state according to the bit line potential on a selected column and has the voltage level changed, and a latching capability of a selected memory cell is reduced to write data fast. Even with a low power supply voltage, a static semiconductor memory device that can stably perform write and read of data is implemented.
Abstract:
Even when a semiconductor device having field effect transistors driven by relatively different power supply voltages provided over a semiconductor substrate is manufactured by the gate-last process, the breakdown voltage of the transistor on the higher voltage side can be ensured.When forming, over the substrate by the gate-last process, a MOSFET of a core region driven by a first power supply voltage and a MOSFET of a high-voltage region driven by a second power supply voltage higher than the first power supply voltage, the thickness of the hard mask film formed over a dummy gate film of the high-voltage region is made thicker than that of the hard mask film formed over a dummy gate film of the core region, prior to a process of patterning a dummy gate of the MOSFET of the core region and the MOSFET of the high-voltage region. Thereby, the breakdown voltage of MOSFET of the high-voltage region can be ensured.
Abstract:
An area in a top view of a region where a low-voltage field effect transistor is formed is reduced, and an area in a top view of a region where a high-voltage field effect transistor is formed is reduced. An active region where the low-voltage field effect transistors (first nMIS and first pMIS) are formed is constituted by a first convex portion of a semiconductor substrate that projects from a surface of an element isolation portion, and an active region where the high-voltage field effect transistors (second nMIS and second pMIS) are formed is constituted by a second convex portion of the semiconductor substrate that projects from the surface of the element isolation portion, and a trench portion formed in the semiconductor substrate.
Abstract:
To suppress performance degradation of a semiconductor device, when the width of a first active region having a first field effect transistor formed therein is smaller than the width of a second active region having a second field effect transistor formed therein, the height of a surface of a first raised source layer of the first field effect transistor is made larger than the height of a surface of a second raised source layer of the second field effect transistor. Moreover, the height of a first surface of a raised drain layer of the first field effect transistor is made larger than a surface of a second raised drain layer of the second field effect transistor.
Abstract:
Cell power supply lines are arranged for memory cell columns, and adjust impedances or voltage levels of the cell power supply lines according to the voltage levels of bit lines in the corresponding columns, respectively. In the data write operation, the cell power supply line is forced into a floating state according to the bit line potential on a selected column and has the voltage level changed, and a latching capability of a selected memory cell is reduced to write data fast. Even with a low power supply voltage, a static semiconductor memory device that can stably perform write and read of data is implemented.