Abstract:
The present invention makes it possible to read a pixel signal at high speed. A pixel array includes a plurality of pixels that store an electrical charge. The amount of stored electrical charge is based on the amount of received light. A first pixel current source and a second pixel current source are coupled in parallel between a ground voltage and a pixel output node on a pixel signal read line. A switch is disposed in a wiring path that couples the pixel output node, the second pixel current source, and the ground voltage.
Abstract:
Provided is a solid-state image sensing device that performs an A/D conversion operation at high speed. A sample-and-hold section 12 included in an A/D converter in a CMOS image sensor includes switches S1a and S1b and capacitor C1 that sample and hold a dark signal during each cycle period, switches S2a and S2b and capacitor C2 that sample and hold a bright signal during an odd-numbered cycle period, and switches S3a and S3b and capacitor C3 that sample and hold a bright signal during an even-numbered cycle period. While a bright signal is held with switch S2b placed in a conducting state, the next bright signal can be sampled by placing switch S3a in a conducting state.
Abstract:
There is a need to provide a solid-state imaging apparatus capable of highly accurately analog-to-digital converting an analog voltage output from a pixel circuit. The solid-state imaging apparatus supplies a counter code to an integral A/D converter. The counter code CD includes 3-phase clock signals and gray signals. The clock signals each have a cycle equal to specified cycle multiplied by 8 and allow phases to shift from each other by specified cycle. The gray signals linearly increase count values at a cycle equal to specified cycle multiplied by 4. The counter code reverses only the logical level of a signal when a count value changes. A count value error can be limited to a minimum.
Abstract:
The present invention provides a technique for achieving higher picture quality of a captured image by reducing noise which occurs at the time of resetting in a solid-state image sensing device and the like. A pixel array in a solid-state image sensing device includes a plurality of pixels and includes an OB pixel region and an effective pixel region. The solid-state image sensing device has a signal processing unit outputting a pixel signal of each of the pixels in the effective pixel region on the basis of the signal level of a signal output from each of the pixels. The solid-state image sensing device obtains a signal without applying a reset signal to each of the pixels in the OB pixel region, obtains the difference between the signal and a signal of a pixel in the effective pixel region, and outputs an image signal.
Abstract:
The present invention provides a small-sized inexpensive solid-state imaging apparatus. A D/A converter included in a successive comparison type A/D converter of the solid-state imaging apparatus includes a multiplexer which selects any of reference voltages VR0 to VR16 and sets it as an analog reference signal when coarse A/D conversion is performed, and which selects reference voltages VR (n−1) to VR (n+2) of the reference voltages VR0 to VR16 when fine A/C conversion is performed, and a capacitor array which generates an analog reference signal, based on the reference voltages VR (n−1) to VR (n+2) when the fine A/D conversion is performed. It is thus possible to reduce settling errors in reference voltage without using redundant capacitors.
Abstract:
The present invention makes it possible to read a pixel signal at high speed. A pixel array includes a plurality of pixels that store an electrical charge. The amount of stored electrical charge is based on the amount of received light. A first pixel current source and a second pixel current source are coupled in parallel between a ground voltage and a pixel output node on a pixel signal read line. A switch is disposed in a wiring path that couples the pixel output node, the second pixel current source, and the ground voltage.
Abstract:
The present invention provides a small-sized inexpensive solid-state imaging apparatus. A D/A converter included in a successive comparison type A/D converter of the solid-state imaging apparatus includes a multiplexer which selects any of reference voltages VR0 to VR16 and sets it as an analog reference signal when coarse A/D conversion is performed, and which selects reference voltages VR (n−1) to VR (n+2) of the reference voltages VR0 to VR16 when fine A/D conversion is performed, and a capacitor array which generates an analog reference signal, based on the reference voltages VR (n−1) to VR (n+2) when the fine A/D conversion is performed. It is thus possible to reduce settling errors in reference voltage without using redundant capacitors.
Abstract:
A solid-state image sensing device according to the invention which can reduce an instantaneous current occurring in transferring image digital signals from analog-digital converters to registers to reduce noise sneaking into the analog-digital converters and a pixel array includes a pixel array, a vertical scanning circuit, a plurality of column ADCs, a plurality of registers, and control signal generation units. The control signal generation units are provided for respective groups into which the column ADCs and the registers disposed on one side of the pixel array are divided, and generate control signals of different timings, for respective units including at least one group, of transfer of converted image digital signals to the registers from the column ADCs operating in parallel.
Abstract:
There is a need to provide a solid-state imaging apparatus capable of highly accurately analog-to-digital converting an analog voltage output from a pixel circuit. The solid-state imaging apparatus supplies a counter code to an integral A/D converter. The counter code CD includes 3-phase clock signals and gray signals. The clock signals each have a cycle equal to specified cycle multiplied by 8 and allow phases to shift from each other by specified cycle. The gray signals linearly increase count values at a cycle equal to specified cycle multiplied by 4. The counter code reverses only the logical level of a signal when a count value changes. A count value error can be limited to a minimum.
Abstract:
The present invention provides a technique for achieving higher picture quality of a captured image by reducing noise which occurs at the time of resetting in a solid-state image sensing device and the like. A pixel array in a solid-state image sensing device includes a plurality of pixels and includes an OB pixel region and an effective pixel region. The solid-state image sensing device has a signal processing unit outputting a pixel signal of each of the pixels in the effective pixel region on the basis of the signal level of a signal output from each of the pixels. The solid-state image sensing device obtains a signal without applying a reset signal to each of the pixels in the OB pixel region, obtains the difference between the signal and a signal of a pixel in the effective pixel region, and outputs an image signal.