Abstract:
The present invention relates to a mixed oxide composition based on zirconium and cerium, to the process for preparing it and to its use in the field of catalysis. The mixed oxide is characterized by a high specific surface area and a specific porosity after calcination at 1100° C.
Abstract:
The present invention relates to cerium oxide particles that have excellent heat resistance under hydrothermal conditions at high temperature. The present invention also relates to a method for preparing such cerium oxide particles and to a catalytic composition comprising said cerium oxide.
Abstract:
The present invention relates to compositions based on zirconium oxide and cerium oxide that exhibit a sufficiently high specific surface area after calcination and a low maximum reduction temperature of the oxide after calcination. Compositions of the present invention may be notably used in various catalytic systems, such as for the treatment of exhaust gases from internal combustion engines.
Abstract:
The present invention relates to the use of a resistant cerium oxide for the preparation of Lean NOx Trap catalytic composition. The invention also relates to such catalytic composition and to a method of treatment of an exhaust gas to decrease the NOx content using said catalytic composition.
Abstract:
The present invention concerns a process for the production of metal doped cerium compositions comprising a cerium oxide and a metal oxide by precipitation. The invention also concerns metal doped cerium compositions providing high crystallites size and exhibiting high thermal stabilities, which may be used as a catalytic support or for polishing applications.