Abstract:
The object is to provide a thermal print head capable of improving printing quality on a medium. The Solution is to provide a base member 11 including a recess 113a, a heat storage region 2 formed in the recess 113a, a resistor layer 4 formed on the base member 11, and an electrode layer 3 formed on the base member 11 and electrically connected to the resistor layer 4. The resistor layer 4 includes a heating portion 41 spanned between two portions of the electrode layer 3 spaced from each other as viewed in a thickness direction Z of the base member 11. The heating portion 41 is located so as to overlap the recess 113a as viewed in the thickness direction Z. The base member 11 is made of a material having a thermal conductivity of 100 to 300 W/(m·K).
Abstract:
A heater includes an elongated substrate, a heating resistor formed on. the substrate, a resistor electrode that is formed and is in contact with the heating resistor, and a heat conducting film. The substrate includes a heat generating section and a non-heat generating section. The heat generating section is a section that is overlapped with, out of the heating resistor and the resistor electrode, only the heating resistor in the lengthwise direction of the substrate. The non-heat generating section is a section that is different from the heat generating section and is adjacent to the heat generating section in the lengthwise direction of the substrate. The heat conducting film is formed so as to extend from the heat generating section into the non-heat generating section on the substrate.
Abstract:
An LED illumination module includes: an LED light emission unit that has at least one LED chip; and a covering that allows light from the LED light emission unit to pass through. The covering has an inner surface that is located on the LED light emission unit's side and an outer surface opposite to the inner surface. The covering has at least one of: an inner recessed surface that is formed in the inner surface so as to be recessed in a direction away from the LED light emission unit; and an outer recessed surface that is formed in the outer surface so as to be recessed in a direction toward the LED light emission unit.
Abstract:
A light emitting device includes a light emitting element, a wire connected to the light emitting element, and a substrate supporting the light emitting element. The substrate is formed with a first recess and a second recess that are open in a common surface of the substrate. The first recess includes a first bottom surface and a first side surface connected to the first bottom surface, and the light emitting element is disposed on the first bottom surface. The second recess includes a second bottom surface and a second side surface connected to the second bottom surface, and the wire is bonded to the second bottom surface. Both of the first side surface and the second side surface reach the common surface. The first side surface is connected to both of the second bottom surface and the second side surface. The opening area of the first recess is larger than the opening area of the second recess.
Abstract:
A light emitting device includes a light emitting element, a wire connected to the light emitting element, and a substrate supporting the light emitting element. The substrate is formed with a first recess and a second recess that are open in a common surface of the substrate. The first recess includes a first bottom surface and a first side surface connected to the first bottom surface, and the light emitting element is disposed on the first bottom surface. The second recess includes a second bottom surface and a second side surface connected to the second bottom surface, and the wire is bonded to the second bottom surface. Both of the first side surface and the second side surface reach the common surface. The first side surface is connected to both of the second bottom surface and the second side surface. The opening area of the first recess is larger than the opening area of the second recess.
Abstract:
A light emitting device includes a light emitting element, a wire connected to the light emitting element, and a substrate supporting the light emitting element. The substrate is formed with a first recess and a second recess that are open in a common surface of the substrate. The first recess includes a first bottom surface and a first side surface connected to the first bottom surface, and the light emitting element is disposed on the first bottom surface. The second recess includes a second bottom surface and a second side surface connected to the second bottom surface, and the wire is bonded to the second bottom surface. Both of the first side surface and the second side surface reach the common surface. The first side surface is connected to both of the second bottom surface and the second side surface. The opening area of the first recess is larger than the opening area of the second recess.
Abstract:
A light emitting unit includes: a light emitting element; a first lead having a first principal surface on which the light emitting element is disposed, a first rear surface configured to face opposite the first principal surface, and a first side configured to connect the first principal surface and the first rear surface; a second lead having a second side configured to face the first side; and a first resin molding body configured to hold the first lead and the second lead. The first resin molding body covers the first principal surface to expose a region of the first principal surface where the light emitting element is disposed, and at least a portion of the first side is exposed from the first resin molding body.