摘要:
A system may comprise one or more source agents, target agents, and a plurality of directory agents, which may determine the target agent to which one or more transactions generated by the source agents is to be sent. A controller may identify one of a plurality of directory agents to process the transactions. The directory agent may determine the control and status registers of the target agents to which the transaction is to be sent. The target agent may complete the transaction after receiving the transaction from the directory agent. The directory agents may store a memory map to resolve the target agent to which the transactions is to be sent. The directory based distributed CSR access may provide scalability to ever increasing number of heterogeneous agents in the system.
摘要:
A system may comprise one or more source agents, target agents, and a plurality of directory agents, which may determine the target agent to which one or more transactions generated by the source agents is to be sent. A controller may identify one of a plurality of directory agents to process the transactions. The directory agent may determine the control and status registers of the target agents to which the transaction is to be sent. The target agent may complete the transaction after receiving the transaction from the directory agent. The directory agents may store a memory map to resolve the target agent to which the transactions is to be sent. The directory based distributed CSR access may provide scalability to ever increasing number of heterogeneous agents in the system.
摘要:
Following a restart or a reboot of a system that includes a multi-core processor, the multi-core processor may assign each active and eligible core a unique advanced programmable interrupt controller (APIC) identifier (ID). Initialization logic may detect a state of each of the plurality of processing cores as active or inactive. The initialization logic may detect an attribute of each of the plurality of processing cores as eligible to be assigned an APIC ID or as ineligible to be assigned the APIC ID.
摘要:
A method performed by a processor is described. The method includes executing an instruction. The instruction has an address as an operand. The executing of the instruction includes sending a signal to cache coherence protocol logic of the processor. In response to the signal, the cache coherence protocol logic issues a request for ownership of a cache line at the address. The cache line is not in a cache of the processor. The request for ownership also indicates that the cache line is not to be sent to the processor.
摘要:
This disclosure is directed to performing a controlled reset of one or more cores while maintaining operation of at least one other core in a multi-core processor. An initialization core may include reset logic that may detect a problematic core or core that is unresponsive or otherwise not operating properly. The initialization core may generate a packet that enables communication with the problematic core. The initialization core may send a reset packet to the problematic core to instruct the problematic core to perform a reset.
摘要:
An initialization core may include reset logic that may detect a global reset signal (GRS). The initialization core may generate one or more packets that enable communication with the cores. The initialization core may send reset packets to each of the cores that instruct the cores to perform a reset. In some embodiments, the reset command may power-off the cores. The initialization core may then transmit unreset packets to each of the cores that instruct the cores to perform an unreset and power-on the cores. In some embodiments, the cores may resume operation automatically without receipt of the unreset packet. The transmission of the packets may be staggered (staged) to control the power-on of the processor and enable the processor unit to more slowly increase its power state.
摘要:
A cache-coherent device may include multiple caches and a cache coherency engine, which monitors whether there are more than one versions of a cache line stored in the caches and whether the version of the cache line in the caches is consistent with the version of the cache line stored in the memory.
摘要:
In one embodiment, a method includes receiving an instruction for decoding in a processor core and dynamically handling the instruction with one of multiple behaviors based on whether contention is predicted. If no contention is predicted, the instruction is executed in the core, and if contention is predicted data associated with the instruction is marshaled and sent to a selected remote agent for execution. Other embodiments are described and claimed.
摘要:
Following a restart or a reboot of a system that includes a multi-core processor, the multi-core processor may assign one of the cores as a boot strap processor (BSP). Initialization logic may detect a state of each of the plurality of processing cores as active or inactive. The initialization logic may detect an attribute of each of the plurality of processing cores as eligible to be assigned as a BSP or as ineligible to be assigned as the BSP. The initialization logic may detect a last processing core of the plurality of processing cores in the interconnect that is an active processing core based at least in part on the state and is eligible to be assigned as the BSP based at least in part on the attribute. In various embodiments, the initialization information may assign the last processing core as the BSP.
摘要:
Following a restart or a reboot of a system that includes a multi-core processor, the multi-core processor may assign each active and eligible core a unique advanced programmable interrupt controller (APIC) identifier (ID). Initialization logic may detect a state of each of the plurality of processing cores as active or inactive. The initialization logic may detect an attribute of each of the plurality of processing cores as eligible to be assigned an APIC ID or as ineligible to be assigned the APIC ID.