摘要:
A multi-product integrated circuit die includes at least two different portions, of which at least one portion can be deliberately rendered non-operational in some manner (e.g., non-functional, inaccessible, and/or non-programmable) within the package. A selection code storage circuit stores a product selection code. A first value of the product selection code selects the option where both the first and second portions of the first die are operational. A second value of the product selection code selects the option where only the first portion of the first die is operational. The selection code storage circuit can include non-volatile memory or a fuse structure, or the product selection code can be configured as a package bonding option. The product selection code can also enable boundary scan for the operational portion of the die, and omit from the boundary scan chain any portions of the die that are deliberately rendered non-operational.
摘要:
An integrated circuit die (e.g., a programmable logic device (PLD) die) is manufactured that has the capability of being configured as at least two differently-sized family members. The IC die is tested prior to packaging. If a first portion of the IC die is fully functional, but a second portion includes a localized defect, then the IC die is packaged with a product selection code that configures the IC die to operate as only the first portion of the die. The second portion of the die is deliberately rendered non-operational. Therefore, the IC die can still be sold as a fully functional packaged IC.
摘要:
A method of providing a family of integrated circuits (ICs) includes applying a first product selection code (PSC) to a first IC die, applying a second PSC to a second IC die, and providing a third packaged IC die. The first IC die includes first and second portions, both of which are operational based on the first PSC. The second IC die is a duplicate of the first die, but the second portion is rendered non-operational by the second PSC. The third IC die is substantially similar to the first portion of the first die. The second and third packages can be the same and the packaged dies can be interchangeable in a system. When the dies are programmable logic device (PLD) dies, the second and third dies use the same configuration bit stream, which may be smaller than the configuration bit stream for the first IC die.
摘要:
A method of modeling two IC dies using the same software model, although the two dies include physical differences. A first programmable logic device (PLD) die includes first and second portions, and is encoded to render the first portion operational and the second portion non-operational. At a boundary between the two portions, interconnect lines traversing the boundary include a first section in the first portion and a second section in the second portion. The second PLD die includes the first portion of the first PLD die, while omitting the second portion. The interconnect lines extending to the edge of the second die are coupled together in pairs. A software model for both die includes a termination model that omits the pair coupling, adds an RC load compensating for the omitted connection, and (for bidirectional interconnect lines) flags one interconnect line in each pair as being invalid for use by routing software.
摘要:
Methods of manufacturing a family of packaged integrated circuits (ICs) having at least two different logic capacities. A first IC die includes two different portions, of which at least one portion can be deliberately rendered non-operational in some manner (e.g., non-functional, inaccessible, and/or non-programmable) within the package. A first set of the first IC dies are packaged such that both portions of the dies are operational. A second set of the first IC dies are packaged such that only the first portion of each die is operational. Once the first and second sets are packaged and the second set of ICs has been evaluated, a decision is made whether or not to manufacture a second IC die that includes the first portion of the first die, while excluding the second portion.
摘要:
A method of modeling two IC dies using the same software model, although the two dies include physical differences. A first programmable logic device (PLD) die includes first and second portions, and is encoded to render the first portion operational and the second portion non-operational. At a boundary between the two portions, interconnect lines traversing the boundary include a first section in the first portion and a second section in the second portion. The second PLD die includes the first portion of the first PLD die, while omitting the second portion. The interconnect lines extending to the edge of the second die are coupled together in pairs. A software model for both die includes a termination model that omits the pair coupling, adds an RC load compensating for the omitted connection, and (for bidirectional interconnect lines) flags one interconnect line in each pair as being invalid for use by routing software.
摘要:
A RAM block includes a circuit for causing the RAM to provide a reset value on the output or a previously captured output value from the RAM when a Reset signal is active. The Reset signal does not change the RAM contents but causes all outputs of the block RAM to be either a reset value or a capture value, as selected by the user. This is useful when the RAM block is configured as a state machine. Thus, in an FPGA or other programmable device, an application can start the state machine in a known state with all address bits equal to 0 and can reset the state machine to this startup state. When the reset signal is active, the state machine can feed back the reset value or capture value to the address inputs of the RAM block that receive state feedback data, regardless of the data actually in those locations.
摘要:
A dedicated block random access memory (RAM) is provided for a programmable logic device (PLD), such as a field programmable gate array (FPGA). The block RAM includes a memory cell array and control logic that is configurable to select one of a plurality of parity or non-parity modes for accessing the memory cell array. In one embodiment, the non-parity modes include a 1×16384 mode, a 2×8192 mode, and a 4×4096 mode, while the parity modes include a 9×2048 mode, a 18×1024 mode and an 36×512 mode. The control logic selects the parity/non-parity mode in response to configuration bits stored in corresponding configuration memory cells of the PLD. The configuration bits are programmed during configuration of the PLD. In one variation, the control logic selects the parity/non-parity mode in response to user signals. In a particular embodiment, the block RAM is a dual-port memory having a first port and a second port. In this embodiment, the first and second ports can be independently configured to have different (or the same) parity or non-parity modes.
摘要:
A RAM block includes a circuit for causing the RAM to provide all 0's on the output when a Reset signal is active. The Reset signal does not change the RAM contents but causes all outputs of the block RAM to be 0. This is useful when the RAM block is configured as a state machine. Thus, in an FPGA or other programmable device, an application can start the state machine in a known state with all address bits equal to 0 and can reset the state machine to this startup state. When the reset signal is active, the state machine feeds back the state of 0 to the address inputs of the RAM block that receive state feedback data, regardless of the data actually in those locations.
摘要:
A method and apparatus to test the inter-die interface between two or more semiconductor die in die stacking applications, where a mismatch exists between the number of input and output pads on a base die and the number of input and output pads on a stacked die. In a first embodiment, a number of through-die vias (TDVs) may be used to implement inter-die signal paths using standard or flexible design rules to maintain statistical TDV yield despite the lack of continuity verification of the inter-die signals paths. In alternate embodiments, programmable multiplexers may be utilized to share one or more inter-die connections between the base die and the one or more stacked die so as to facilitate testing and normal operation of each inter-die connection. In other embodiments, spare TDVs are utilized only during test operations, so as to accommodate the mismatch. In yet other embodiments, built-in-test (BIT) circuits are configured to perform logic operations using a plurality of inter-die input/output (I/O) signals to eliminate the need to implement an identical number of input and output ports between the base die and the one or more stacked die to facilitate inter-die testing.