摘要:
Non-volatile resistance change memories, systems, arrangements and associated methods are implemented in a variety of embodiments. According to one embodiment, a memory cell having two sections with outwardly-facing portions, the outwardly-facing portions electrically coupled to electrodes is implemented. The memory cell has an ionic barrier between the two sections. The two sections and the ionic barrier facilitate movement of ions from one of the two sections to the other of the two sections in response to a first voltage differential across the outwardly-facing portions. The two sections and the ionic barrier diminish movement of ions from the one of the two sections to the other of the two sections in response to another voltage differential across the outwardly-facing portions.
摘要:
Structures and methods to enhance cycling endurance of BEOL memory elements are disclosed. In some embodiments, a memory element can include a support layer having a smooth and planar upper surface as deposited or as created by additional processing. A first electrode is formed the smooth and planar upper surface. The support layer can be configured to influence the formation of the first electrode to determine a substantially smooth surface of the first electrode. The memory element is formed over the first electrode having the substantially smooth surface, the memory element including one or more layers of an insulating metal oxide (IMO) operative to exchange ions to store a plurality of resistive states. The substantially smooth surface of the first electrode provides for uniform current densities through unit cross-sectional areas of the IMO. The memory element can include one or more layers of a conductive metal oxide (CMO).
摘要:
Memory cell formation using ion implant isolated conductive metal oxide is disclosed, including forming a bottom electrode below unetched conductive metal oxide layer(s), forming the unetched conductive metal oxide layer(s) including depositing at least one layer of a conductive metal oxide (CMO) material (e.g., PrCaMnOx, LaSrCoOx, LaNiOx, etc.) over the bottom electrode. At least one portion of the layer of CMO is configured to act as a memory element without etching, and performing ion implantation on portions of the layer(s) of CMO to create insulating metal oxide (IMO) regions in the layer(s) of CMO. The IMO regions are positioned adjacent to electrically conductive CMO regions in the unetched layer(s) of CMO and the electrically conductive CMO regions are disposed above and in contact with the bottom electrode and form memory elements operative to store non-volatile data as a plurality of conductivity profiles (e.g., resistive states indicative of stored data).
摘要:
An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.
摘要:
An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.
摘要:
An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.
摘要:
A memory cell including a memory element comprising an electrolytic insulator in contact with a conductive metal oxide (CMO) is disclosed. The CMO includes a crystalline structure and can comprise a pyrochlore oxide, a conductive binary oxide, a multiple B-site perovskite, and a Ruddlesden-Popper structure. The CMO includes mobile ions that can be transported to/from the electrolytic insulator in response to an electric field of appropriate magnitude and direction generated by a write voltage applied across the electrolytic insulator and CMO. The memory cell can include a non-ohmic device (NOD) that is electrically in series with the memory element. The memory cell can be positioned between a cross-point of conductive array lines in a two-terminal cross-point memory array in a single layer of memory or multiple vertically stacked layers of memory that are fabricated over a substrate that includes active circuitry for data operations on the array layer(s).
摘要:
A memory device with band gap control is described. A memory cell can include a conductive oxide layer in contact with and electrically in series with an electronically insulating layer. A thickness of the electronically insulating layer is configured to increase from an initial thickness to a target thickness. The increased thickness of the electronically insulating layer can improve resistive memory effect, increase a magnitude of a read current during read operations, and lower barrier height with a concomitant reduction in band gap of the electronically insulating layer. The memory cell can include a memory element that comprises the conductive oxide layer and the electronically insulating layer and can optionally include a non-ohmic device (NOD). The memory cell can be positioned in a two-terminal cross-point array between a pair of conductive array lines across which voltages for data operations are applied. The memory cell and array can be fabricated BEOL.
摘要:
Non-volatile resistance change memories, systems, arrangements and associated methods are implemented in a variety of embodiments. According to one embodiment, a memory cell having two sections with outwardly-facing portions, the outwardly-facing portions electrically coupled to electrodes is implemented. The memory cell has an ionic barrier between the two sections. The two sections and the ionic barrier facilitate movement of ions from one of the two sections to the other of the two sections in response to a first voltage differential across the outwardly-facing portions. The two sections and the ionic barrier diminish movement of ions from the one of the two sections to the other of the two sections in response to another voltage differential across the outwardly-facing portions.
摘要:
Memory element consisting of an electrode (2), a ferroelectric layer (3) adjoining the latter, a layer (4) made from non-ferroelectric material adjoining the ferroelectric layer (3) and an electrode (5) adjoining the layer (4) made from non-ferroelectric material, wherein the ferroelectric layer is at least 10 nanometers thick, the electrical resistance, which is formed by the non-ferroelectric layer and the ferroelectric layer, depends upon the direction of polarization in the ferroelectric layer, and wherein the memory element comprises means for measuring the electrical resistance of the non-ferroelectric layer and the ferroelectric layer.