Abstract:
Memory cell formation using ion implant isolated conductive metal oxide is disclosed, including forming a bottom electrode below unetched conductive metal oxide layer(s), forming the unetched conductive metal oxide layer(s) including depositing at least one layer of a conductive metal oxide (CMO) material (e.g., PrCaMnOx, LaSrCoOx, LaNiOx, etc.) over the bottom electrode. At least one portion of the layer of CMO is configured to act as a memory element without etching, and performing ion implantation on portions of the layer(s) of CMO to create insulating metal oxide (IMO) regions in the layer(s) of CMO. The IMO regions are positioned adjacent to electrically conductive CMO regions in the unetched layer(s) of CMO and the electrically conductive CMO regions are disposed above and in contact with the bottom electrode and form memory elements operative to store non-volatile data as a plurality of conductivity profiles (e.g., resistive states indicative of stored data).
Abstract:
A conductive memory stack is provided. The memory stack includes a bottom electrode, a top electrode and a multi-resistive state element that is sandwiched between the electrodes. The bottom electrode can be described as having a top face with a first surface area, the top electrode has a bottom face with a second surface area and the multi-resistive state element has a bottom face with a third surface area and a top face with a fourth surface area. The multi-resistive state element's bottom face is in contact with the bottom electrode's top face and the multi-resistive state element's top face is in contact with the top electrode's bottom face. Furthermore, the fourth surface area is not equal to the second surface area.
Abstract:
Multiple modes of operation in a cross point array. The invention is a cross point array that uses a read voltage across a conductive array line pair during a read mode. The read voltage produces a read current that is indicative of a first program state when the read current is at a first level and indicative of a second program state when the read current is at a second level. The read current is ineffective to produce a change in program state. A first voltage pulse is used during a first write mode if a change from a second program state to a first program state is desired. A second voltage pulse is used during a second write mode if a change from the first program state to the second program state is desired.
Abstract:
A cross point array and peripheral circuitry that accesses the cross point array. The peripheral circuitry receives a supply voltage of approximately 1.8 volts or less, generates voltages of a magnitude not more than approximately 3 volts, and senses current that is indicative of a nonvolatile memory state.
Abstract:
A re-writable memory with multiple memory layers. Using both terminals of a memory cell in a stacked cross point structure for selection purposes allows multiple layers of conductive lines to be selected as long as there is only one memory cell that has two terminals selected. Sharing logic over multiple layers allows driver sets to be reused.
Abstract:
A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3—LSCoO or LaNiO3—LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.
Abstract:
A treated conductive element is provided. A conductive element can be treated by depositing either a reactive metal or a very thin layer of material on the conductive element. The reactive metal (or very thin layer of material) would typically be sandwiched between the conductive element and an electrode. The structure additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays.
Abstract:
A memory using a mixed valence conductive oxides. The memory includes a mixed valence conductive oxide that is less conductive in its oxygen deficient state and a mixed electronic ionic conductor that is an electrolyte to oxygen and promotes an electric field effective to cause oxygen ionic motion.
Abstract:
A memory array with enhanced functionality is presented. Each cell in the array includes a pair of memory element electrodes. A read current across the pair of memory element electrodes is indicative of stored information and different write voltage levels across the pair of memory element electrodes are employed to store nonvolatile information. The array has at least one enhanced functionality portion that performs operations selected from the group consisting of reference, error correction, device specific storage, defect mapping tables, and redundancy.
Abstract:
A memory including reference cells is provided. The memory has address decoding circuitry and an array of memory cells that are non-volatile and re-writable. Each memory cell has a two terminal memory plug that is capable of experiencing a change in resistance. Sensing circuitry compares activated memory cells to a reference level. The reference level is typically generated by at least one reference cell that can be selected at the same time the memory cell is selected.