Abstract:
A semiconductor device includes: a drive circuit; a standby circuit; and a detection circuit. The drive circuit turns on an output transistor connected to a load based on an active input signal. The standby circuit intermittently outputs an output signal based on a non-active input signal. The detection circuit measures voltage of a load side of the output transistor based on the output signal and output a measurement result.
Abstract:
A sophisticated semiconductor device is provided. A semiconductor device including an IPD chip and an MCU chip which are included in one package. The IPD chip includes: a power transistor that drives an external load; a gate drive circuit that drives the power transistor; and a protection circuit that protects the power transistor from having a breakdown. The MCU chip includes an arithmetic processing unit that performs arithmetic processing based on detected data output from the protection circuit, and a storage unit that stores a program for the arithmetic processing unit. The MCU chip has a function of controlling operation of the power transistor according to the detected data.
Abstract:
A semiconductor device includes first and second semiconductor chips, a plurality of leads, a plurality of wires, and a sealing body sealing those components. A first pad electrode, a second pad electrode, and an internal wiring electrically connected to the first and second electrode pads are formed on a main surface of the first semiconductor chip. A third pad electrode of the second semiconductor chip is electrically connected to the first electrode pad of the first semiconductor chip via a first wire, and the second electrode pad of the first semiconductor chip is electrically connected to a first lead via a second wire. A distance between the first lead and the first semiconductor chip is smaller than a distance between the first lead and the second semiconductor chip. The first electrode pad, the second electrode pad and the internal wiring are not connected to any circuit formed in the first semiconductor chip.
Abstract:
A control method of a semiconductor device includes inspecting an electrical property of a current detection circuit in the first semiconductor chip, writing information on a correction equation obtained on the basis of an inspection result in a memory circuit of the second semiconductor chip, and correcting, with the second semiconductor chip, a detection result obtained by the current detection circuit on the basis of the information on the correction equation.
Abstract:
The power control device reliably disconnects the current path of the failed output transistor. In particular, the power control device includes output transistors, an output terminal, bonding wires connecting the output transistors to the output terminal, output transistor driving circuits controlling the output of the output transistors, and a failure detection circuit detecting the failure of the output transistors. When the failure detection circuit detects the failure of the output transistors and outputs the failure detection signals, the output transistor drive circuits control the outputs of the output transistors so that a larger current flows through the bonding wires than when the failure is not detected.
Abstract:
A semiconductor device and electronic control device capable of shutting off the reverse current flow from a load to a power supply is provided.The power transistor QN1 is provided between the positive power supply terminal Pi2(+) and the load-driving terminal Po2(+), and has a source and a back-gate coupled to the positive power supply terminal Pi2(+). The power transistor QN2 is provided in series with the power transistor QN1, and its sources and backgates are coupled to the load-driving terminal Po2(+). The booster CP1a charges the gates of the power transistors QN1. The gate discharge circuit DCG1a discharges the gate charge of the power transistor QN1 to the source when the potential of the negative power supply terminal Pi2(−) is higher than the potential of the positive power supply terminal Pi2(+).
Abstract:
A semiconductor device with the highly precise current detecting function is provided. Current detection is performed using a semiconductor device in which two semiconductor chips are mounted in one package. The first semiconductor chip is provided with an electric power supply transistor to supply power to a load via a load driving terminal, and a current detection circuit to detect a current flowing through the load driving terminal. In the inspection process of the semiconductor device, the electrical property of the current detection circuit in the first semiconductor chip is inspected, and the information on a correction equation obtained as the inspection result is written in a memory circuit of the second semiconductor chip. The second semiconductor chip corrects the detection result obtained by the current detection circuit based on the information on the correction equation written in the memory circuit concerned.