Abstract:
A source interconnect and a drain interconnect are alternately provided between a plurality of transistor units. One bonding wire is connected to a source interconnect at a plurality of points. The other bonding wire is connected to a source interconnect at a plurality of points. In addition, one bonding wire is connected to a drain interconnect at a plurality of points. In addition, the other bonding wire is connected to a drain interconnect at a plurality of points.
Abstract:
A frequency-locked loop circuit includes a digital control oscillator that generates a clock, and an FLL (frequency-locked loop) controller that generates a frequency control code to control an oscillation frequency of the clock. The FLL controller includes a frequency comparison unit that compares a frequency of a clock generated by the digital control oscillator with a frequency of a multiplied reference clock, and a delay code control unit that generates, based on a comparison result of the frequency comparison unit, the frequency control code so that the frequency of the clock generated by the digital control oscillator matches the frequency of the multiplied reference clock, the frequency comparison unit determines the frequency of the clock, and the delay code control unit generates the frequency control code according to a determination result of the frequency comparison unit, and outputs the frequency control code to the digital control oscillator.
Abstract:
A frequency-locked loop circuit has a digital control oscillator that generates a clock, and an FLL controller that generates a frequency control code to control an oscillation frequency of the clock. The FLL controller has a frequency comparison unit and a delay code control unit. The frequency comparison unit compares a frequency of a clock generated by the digital control oscillator with a frequency of a multiplied reference clock. The delay code control unit generates, based on a comparison result of the frequency comparison unit, the frequency control code so that the frequency of the clock generated by the digital control oscillator matches the frequency of the multiplied reference clock. The frequency comparison unit determines the frequency of the clock by using first and second thresholds. The delay code control unit generates the frequency control code according to a determination of the frequency comparison unit.
Abstract:
Disclosed is a semiconductor device that suppresses stress-induced resistance value changes. The semiconductor device includes a resistance correction circuit. The resistance correction circuit includes a first resistor whose stress-resistance value relationship is a first relationship, a second resistor whose stress-resistance value relationship is a second relationship, and a correction section that controls the resistance value of a correction target resistor. The correction section detects the difference between the resistance value of the first resistor and the resistance value of the second resistor and corrects, in accordance with the result of detection, the resistance value of the correction target resistor.
Abstract:
Disclosed is a semiconductor device that suppresses stress-induced resistance value changes. The semiconductor device includes a resistance correction circuit. The resistance correction circuit includes a first resistor whose stress-resistance value relationship is a first relationship, a second resistor whose stress-resistance value relationship is a second relationship, and a correction section that controls the resistance value of a correction target resistor. The correction section detects the difference between the resistance value of the first resistor and the resistance value of the second resistor and corrects, in accordance with the result of detection, the resistance value of the correction target resistor.
Abstract:
Disclosed is a semiconductor device that suppresses stress-induced resistance value changes. The semiconductor device includes a resistance correction circuit. The resistance correction circuit includes a first resistor whose stress-resistance value relationship is a first relationship, a second resistor whose stress-resistance value relationship is a second relationship, and a correction section that controls the resistance value of a correction target resistor. The correction section detects the difference between the resistance value of the first resistor and the resistance value of the second resistor and corrects, in accordance with the result of detection, the resistance value of the correction target resistor.
Abstract:
Disclosed is a semiconductor device that suppresses stress-induced resistance value changes. The semiconductor device includes a resistance correction circuit. The resistance correction circuit includes a first resistor whose stress-resistance value relationship is a first relationship, a second resistor whose stress-resistance value relationship is a second relationship, and a correction section that controls the resistance value of a correction target resistor. The correction section detects the difference between the resistance value of the first resistor and the resistance value of the second resistor and corrects, in accordance with the result of detection, the resistance value of the correction target resistor.
Abstract:
Disclosed is a semiconductor device that suppresses stress-induced resistance value changes. The semiconductor device includes a resistance correction circuit. The resistance correction circuit includes a first resistor whose stress-resistance value relationship is a first relationship, a second resistor whose stress-resistance value relationship is a second relationship, and a correction section that controls the resistance value of a correction target resistor. The correction section detects the difference between the resistance value of the first resistor and the resistance value of the second resistor and corrects, in accordance with the result of detection, the resistance value of the correction target resistor.