Abstract:
A method for fabricating a resonator, and in particular, a thin film bulk acoustic resonator (FBAR), and a resonator embodying the method are disclosed. An FBAR is fabricated on a substrate by reducing mass from a top electrode layer. For a substrate having multiple resonators, mass is reduced from only selected resonator to provide resonators having different resonance frequencies on the same substrate.
Abstract:
A method for fabricating a resonator, and in particular, a thin film bulk acoustic resonator (FBAR), and a resonator embodying the method are disclosed. An FBAR is fabricated on a substrate by mass loading piezoelectric (PZ) layer between two electrodes. For a substrate having multiple resonators, only selected resonator is mass loaded to provide resonators having different resonance frequencies on the same substrate.
Abstract:
A method for fabricating a resonator, and in particular, a thin film bulk acoustic resonator (FBAR), and a resonator embodying the method are disclosed. An FBAR is fabricated on a substrate by introducing a mass loading electrode to a bottom electrode layer. For a substrate having multiple resonators, mass loading bottom electrode is introduced for only selected resonator to provide resonators having different resonance frequencies on the same substrate.
Abstract:
A sensor senses an environmental condition. The sensor includes a film bulk acoustic resonator that includes a layer of material that causes resonant frequency and/or quality factor shifts of the film bulk acoustic resonator in response to changes in the environmental condition. The environmental condition may be relative humidity and the layer of material may be a moisture absorptive material.
Abstract:
An apparatus including vertically separated acoustic resonators are disclosed. The apparatus includes a first acoustic resonator on a substrate and a second acoustic resonator vertically separated above the first acoustic resonator. Because the resonators are vertically separated above another, total area required to implement the resonators is reduced thereby savings in die size and cost are realized. The vertically separated resonators are supported by standoffs that are fabricated on the substrate, or on a resonator.
Abstract:
A magnetron with mechanisms for smoothly and continuously adjusting a DC power applied to its targets to compensate for the changes in the sputtering characteristics of the targets that occur with target aging. A magnetron according to the present teachings includes a set of concentric targets for sputtering a film onto a wafer in response to an AC power and a DC power applied to the targets and a power controller that adjusts the DC power. The adjustments to the DC power enable the magnetron to maintain uniformity in the thicknesses of films formed with the magnetron throughout the life of its targets.
Abstract:
In an array of acoustic resonators, the effective coupling coefficient of first and second filters are individually tailored in order to achieve desired frequency responses. In a duplexer embodiment, the effective coupling coefficient of a transmit band-pass filter is lower than the effective coupling coefficient of a receive band-pass filter of the same duplexer. In one embodiment, the tailoring of the coefficients is achieved by varying the ratio of the thickness of a piezoelectric layer to the total thickness of electrode layers. For example, the total thickness of the electrode layers of the transmit filter may be in the range of 1.2 to 2.8 times the total thickness of the electrode layers of the receive filter. In another embodiment, the coefficient tailoring is achieved by forming a capacitor in parallel with an acoustic resonator within the filter for which the effective coupling coefficient is to be degraded. Preferably, the capacitor is formed of the same materials used to fabricate a film bulk acoustic resonator (FBAR). The capacitor may be mass loaded to change its frequency by depositing a metal layer on the capacitor. Alternatively, the mass loading may be provided by forming the capacitor directly on a substrate.
Abstract:
A bulk acoustic wave device that provides a high spectral purity, high Q, resonator in the radio frequency and microwave frequency ranges. Such resonators may be coupled together to form filters or other frequency selective devices. The bulk acoustical wave filter is constructed from a piezoelectric (PZ) material having a first surface and a second surface and first and second electrodes. The first electrode includes an electrically conducting layer on the first surface, and the second electrode includes an electrically conducting layer on the second surface. The first electrode overlies at least a portion of the second electrode, the portion of the first electrode that overlies the second electrode has a periphery which is a non-rectangular, irregular polygon. In the preferred embodiment of the present invention, the periphery is a three-sided, four-sided, or n-sided irregular polygon in which no two sides are parallel to one another.
Abstract:
An apparatus including vertically separated acoustic resonators are disclosed. The apparatus includes a first acoustic resonator on a substrate and a second acoustic resonator vertically separated above the first acoustic resonator. Because the resonators are vertically separated above another, total area required to implement the resonators is reduced thereby savings in die size and cost are realized. The vertically separated resonators are supported by standoffs that are fabricated on the substrate, or on a resonator.
Abstract:
One embodiment of the film acoustically-coupled transformer (FACT) includes a decoupled stacked bulk acoustic resonator (DSBAR) having a lower film bulk acoustic resonator (FBAR) an upper FBAR stacked on the lower FBAR, and, between the FBARs, an acoustic decoupler comprising a layer of acoustic decoupling material. Each FBAR has opposed planar electrodes with a piezoelectric element between them. The FACT additionally has first terminals electrically connected to the electrodes of one FBAR and second terminals electrically connected to the electrodes of the other FBAR. Another embodiment has decoupled stacked bulk acoustic resonators (DSBARs), each as described above, a first electrical circuit interconnecting the lower FBARs, and a second electrical circuit interconnecting the upper FBARs. The FACT provides impedance transformation, can linking single-ended circuitry with balanced circuitry or vice versa and electrically isolates primary and secondary. Some embodiments are additionally electrically balanced.