摘要:
In various embodiments, a tissue thickness compensator can comprise a film body formed from a continuous extruded shape and, in addition, a fibrous medicament core.
摘要:
In various embodiments, a tissue thickness compensator can comprise a film body formed from a continuous extruded shape and, in addition, a fibrous medicament core.
摘要:
A tissue thickness compensator may generally comprise a first layer comprising a first biocompatible material sealingly enclosed in a water impermeable material and a second layer comprising a second biocompatible material comprising at least one encapsulation, wherein the first biocompatible material expands when contacted with a fluid. The tissue thickness compensator may comprise a haemostatic agent, an anti-inflammatory agent, an antibiotic agent, anti-microbial agent, an anti-adhesion agent, an anti-coagulant agent, a medicament, and/or pharmaceutically active agent. The encapsulation may comprise a biodegradable material to degrade in vivo and/or in situ. The tissue thickness compensator may comprise a hydrogel. The reaction product may comprise a fluid-swellable composition. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.
摘要:
A tissue thickness compensator may generally comprise a first layer comprising a first biocompatible material sealingly enclosed in a water impermeable material and a second layer comprising a second biocompatible material comprising at least one encapsulation, wherein the first biocompatible material expands when contacted with a fluid. The tissue thickness compensator may comprise a haemostatic agent, an anti-inflammatory agent, an antibiotic agent, anti-microbial agent, an anti-adhesion agent, an anti-coagulant agent, a medicament, and/or pharmaceutically active agent. The encapsulation may comprise a biodegradable material to degrade in vivo and/or in situ. The tissue thickness compensator may comprise a hydrogel. The reaction product may comprise a fluid-swellable composition. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.
摘要:
A two-part tissue thickness compensator assembly can include a first tissue thickness compensator configured to be positioned relative to an anvil of a surgical stapler, a second tissue thickness compensator configured to be positioned relative to a staple cartridge of the surgical stapler, and a hinge connecting the first tissue thickness compensator to the second tissue thickness compensator. The first and/or second tissue thickness compensators may include additional engagement features, such as a raised ridge that engages a slot in the anvil and/or the staple cartridge. In certain embodiments, the first and/or second tissue thickness compensators may include an encasement that contains a suitable biologic agent. An end effector assembly may be provided for attachment to a surgical instrument that includes, for example, a staple cartridge, an anvil, a first tissue thickness compensator positioned on the anvil, and a second tissue thickness compensator positioned on the staple cartridge.
摘要:
A two-part tissue thickness compensator assembly can include a first tissue thickness compensator configured to be positioned relative to an anvil of a surgical stapler, a second tissue thickness compensator configured to be positioned relative to a staple cartridge of the surgical stapler, and a hinge connecting the first tissue thickness compensator to the second tissue thickness compensator. The first and/or second tissue thickness compensators may include additional engagement features, such as a raised ridge that engages a slot in the anvil and/or the staple cartridge. In certain embodiments, the first and/or second tissue thickness compensators may include an encasement that contains a suitable biologic agent. An end effector assembly may be provided for attachment to a surgical instrument that includes, for example, a staple cartridge, an anvil, a first tissue thickness compensator positioned on the anvil, and a second tissue thickness compensator positioned on the staple cartridge.
摘要:
A tissue thickness compensator may generally comprise a biocompatible material, a first component, and a second component, wherein the first component and second component form a reaction product to expand the tissue thickness compensator. The first component may comprise a first hydrogel precursor, the second component may comprise a second hydrogel precursor, and the reaction product may comprise a hydrogel. The reaction product may be formed in vivo and/or in situ by contacting the first component and the second component. The first component and/or second component may be encapsulated and configured to release the components when ruptured. The reaction product may comprise a fluid-swellable composition. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.
摘要:
A tissue thickness compensator may generally comprise a biocompatible material, a first component, and a second component, wherein the first component and second component form a reaction product to expand the tissue thickness compensator. The first component may comprise a first hydrogel precursor, the second component may comprise a second hydrogel precursor, and the reaction product may comprise a hydrogel. The reaction product may be formed in vivo and/or in situ by contacting the first component and the second component. The first component and/or second component may be encapsulated and configured to release the components when ruptured. The reaction product may comprise a fluid-swellable composition. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.
摘要:
Methods and devices create an intestinal braking effect, are non-invasive or minimally invasive, and may be reversible. These methods and devices may be accomplished via stabilized implantable systems and ingestible pills. In one aspect, a method of inducing satiety includes implanting an implant within a lumen of a gastrointestinal tract and retaining a portion of chyme that flows by the implant within a body of the implant. The method further involves re-releasing the retained chyme from the implant into the gastrointestinal tract at a predetermined rate slower than a rate caused by natural peristalsis.
摘要:
Methods and devices create an intestinal braking effect, are non-invasive or minimally invasive, and may be reversible. These methods and devices are accomplished via stabilized implantable systems and ingestible pills. In one embodiment, a method of producing satiety comprising the steps of accessing a gastrointestinal tract of a patient and implanting an intraintestinal therapeutic substance eluting implant. The implant is capable of eluting a satiety inducing substance selected from at least one of a nutrient, a specific satiety inducing bio-active substance, pancreatic polypeptides, free fatty acids, cholecystokinin, amino acids, glutamine, lipids, linoleic acid, or a combination thereof, from the implant into the gastrointestinal tract.