Abstract:
The disclosure relates to a vehicle architecture for controlling and regulating an electric drive of an electric or hybrid vehicle, having a power electronics system which is connected firstly to the electric drive and secondly to a battery or to a battery system. A battery management system is associated with the battery or the battery system. The vehicle architecture comprises a master controller or a controller which is equipped with a master functionality into which functionalities at least of the battery management system and of the power electronics system of the electric drive are exported.
Abstract:
The disclosure relates to a vehicle architecture for controlling and regulating an electric drive of an electric or hybrid vehicle, having a power electronics system which is connected firstly to the electric drive and secondly to a battery or to a battery system. A battery management system is associated with the battery or the battery system. The vehicle architecture comprises a master controller or a controller which is equipped with a master functionality into which functionalities at least of the battery management system and of the power electronics system of the electric drive are exported.
Abstract:
A battery includes at least one galvanic cell enclosed in one cell housing in each case and a pressure-sensitive diaphragm in the cell housing. The diaphragm is configured to react to at least one discrete degree of pressure difference with at least one discrete degree of deformation. A signal encoder is positioned in the operative region of a deformation of the diaphragm. The battery has at least one electric switching element operatively connected to the signal encoder and configured to disconnect a main electric current of the battery. A motor vehicle is connected to the battery.
Abstract:
The present disclosure relates to a method for providing codes which describe the state of risk (SOR) of a battery having at least one cell. The method includes determining a code SORT for the state of risk of the battery with regard to the cell temperature, and determining a code SORV for the state of risk of the battery with respect to the cell voltage. The method further includes providing the code SORT and/or the code SORV for further use.
Abstract:
The invention relates to a cooling plate (10) for battery cells (40), wherein the cooling plate (10) is in the form of a mounting plate and has mounting elements (12) for directly mounting the cooling plate (10) into a motor vehicle. It is further necessary for the cooling plate (10) together with a housing (20), in particular a half-shell housing, to form a closed-off space (30) for accommodating battery cells (40). The invention further relates to battery cells (40), to a battery cell module and also to a motor vehicle having a battery cell module of this kind.
Abstract:
The invention relates to a method for managing a battery comprising a plurality of battery cells, wherein a maximum value of a current that can be delivered by the battery is adjusted on the basis of a frequency distribution (44) of a root mean square current delivered by the battery. The invention further relates to a battery management system and a computer program for carrying out said method as well as to a motor vehicle comprising a battery which includes a battery management system of said type.
Abstract:
A monitoring device for a battery, a lithium-ion battery with the monitoring device and a method for the monitoring of a battery, wherein the battery is provided with a plurality of cell composites comprising a number of mutually parallel-interconnected battery cells. The cell composites are also interconnected by means of electrical cell couplers, and one or more temperature sensors are arranged between the cell composites. Where a voltage drop across one or more of the battery cells on the electrical cell couplers exceeds a predetermined value and, simultaneously, a temperature occurs on at least one of the temperature sensors which exceeds a predetermined value, a fault signal is generated. The defective battery cell can then be isolated from the cell composite.
Abstract:
Electrical energy storage system comprising a plurality of electrochemical energy stores, which are electrically connectable to primary connection poles of the electrical energy storage system for providing a primary voltage; secondary connection poles for providing a secondary voltage, wherein the secondary connection poles are electrically connectable to an electric power source by means of secondary switches; at least one first primary switch, which is electrically connected to an electrical connection between two of the electrochemical energy stores and to an electrical connection between a first secondary switch and a first secondary connection pole, wherein the electrochemical energy stores electrically connected between the electrical connection and a second primary connection pole are electrically connectable to the first secondary connection pole of the electrical energy storage system by means of the first primary switch to provide a secondary voltage, which is lower than the primary voltage.
Abstract:
A monitoring device for a battery, a lithium-ion battery with the monitoring device and a method for the monitoring of a battery, wherein the battery is provided with a plurality of cell composites comprising a number of mutually parallel-interconnected battery cells. The cell composites are also interconnected by means of electrical cell couplers, and one or more temperature sensors are arranged between the cell composites. Where a voltage drop across one or more of the battery cells on the electrical cell couplers exceeds a predetermined value and, simultaneously, a temperature occurs on at least one of the temperature sensors which exceeds a predetermined value, a fault signal is generated. The defective battery cell can then be isolated from the cell composite.
Abstract:
Detection of corrosion within an at least partially electrically conductive housing of an electric energy storage unit. The electric energy storage unit has a positive terminal and a resistance element between the positive terminal and the housing. State of charge values of the electric energy storage unit for at least one first instant of time and at least one second instant of time are determined. An electrical isolation resistance value between the housing of the electric energy storage unit and at least one reference point for at least one third instant of time may also be determined. A first comparison of a difference of the determined state of charge values with a predefined state of charge difference value for the electric energy storage unit and/or a second comparison of the determined electrical isolation resistance value with a predefined electrical isolation resistance value for the electric energy storage unit are performed.