摘要:
An apparatus that couples automated injection with flow feedback to provide nanoliter accuracy in controlling microliter volumes. The apparatus comprises generally a source of hydraulic fluid pressure, a fluid isolator joined to the outlet of the hydraulic pressure source and a flow sensor to provide pressure-driven analyte metering. For operation generally and particularly in microfluidic systems the hydraulic pressure source is typically an electrokinetic (EK) pump that incorporates gasless electrodes. The apparatus is capable of metering sub-microliter volumes at flowrates of 1-100 μL/min into microsystem load pressures of up to 1000-50 psi, respectively. Flowrates can be specified within 0.5 μL/min and volumes as small as 80 nL can be metered.
摘要翻译:将自动注射与流量反馈相结合的装置,以提供纳升精度来控制微升体积。 该装置通常包括液压流体压力源,连接到液压源的出口的流体隔离器和用于提供压力驱动的分析物计量的流量传感器。 对于一般而且特别是在微流体系统中的操作,液压源通常是包含无气体电极的电动(EK)泵。 该装置能够以1-100μL/ min的流量计量分数达到1000-50psi的微系统负荷压力的亚微升体积。 流量可以在0.5 muL / min范围内,体积小至80 nL可以计量。
摘要:
The invention relates to a means of enabling inspection of engineering components, such as rails used in the railway industry.A rail inspection device comprises a sensor (24) and a compliant spacer (26). The compliant spacer (26) has an inner surface and outer surface. The sensor (24) is urged against the inner surface of the spacer (26) and, when in use, the outer surface of the spacer (26) is in contact with the rail under inspection.
摘要:
A freeze-thaw valve and a method of micro-machining the freeze-thaw valve is provided and includes a valve housing, wherein the valve housing defines a housing cavity and includes a housing inlet, a housing vent, a capillary tubing inlet and a capillary tubing outlet. A valve body is provided, at least a portion of which is lithographically constructed, wherein the valve body includes a refrigerant inlet, a refrigerant outlet and an expansion chamber. The expansion chamber is disposed to communicate the refrigerant inlet with the refrigerant outlet and includes a restriction region having a flow restriction. Additionally, the valve body is disposed within the housing cavity to form an insulating channel between the valve housing and the valve body.
摘要:
The invention relates to a means of enabling inspection of engineering components, such as rails used in the railway industry.A rail inspection device comprises a sensor (24) and a compliant spacer (26). The compliant spacer (26) has an inner surface and outer surface. The sensor (24) is urged against the inner surface of the spacer (26) and, when in use, the outer surface of the spacer (26) is in contact with the rail under inspection.
摘要:
A system and method are presented for creating and maintaining quality control records. The system includes a plurality of client devices. Each client device captures information, data and decisions associated with raw material, components and assemblies of components. The information, data and decisions document operations and operating conditions at a plurality of stages in a life cycle of the raw materials, components and assemblies. The system includes a communication network and one or more servers operatively coupled to the client devices over the network. The servers create quality control records including the information, data and decisions for the materials, components and assemblies. The system includes one or more data stores that store the quality control records. The information, data and decisions includes measurements and readings taken by the input-output devices and decisions made at the stages and that document properties of the raw materials, components and assemblies.
摘要:
A device for measuring fluid flow rates over a wide range of flow rates ( 10 μL/min) and at pressures at least as great as 2,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined. A pair of spaced apart electrodes can be used to produce the electrochemical pulse. In those instances where it is desired to measure a wide range of fluid flow rates a three electrode configuration in which the electrodes are spaced at unequal distances has been found to be desirable.
摘要:
The invention relates a method for providing reconnection to a ferrule to a service line from within the bore of a lined host pipe adapted to carry a fluid, comprising lining the host pipe with a liner, locating the ferrule from within the lined host pipe, forming a passage for fluid through the liner to the ferrule, and forming a seal of the liner with the system whereby to obviate leakage of fluid between the liner and host pipe.
摘要:
Gas bubble-free electrodes are necessary for stable long-term operation of millimeter-scale electrokinetic (EK) pumps when currents exceed 10-50 μA. An accompanying Technical Advance describes EK pumps that draw 1-3 mA. We have developed gasless and gas bubble-free electrodes that can run millimeter-scale (and smaller) EK pumps continuously at high current densities. Two types of gasless electrodes based on porous carbon and ruthenium/tantalum-on-titanium oxides have been developed that are supercapacitors which store ions from a fluid electrolyte. The gas bubble-free electrodes isolate gas generated by water electrolysis of the pump fluid from the fluid channels by means of an electrically-conductive polymer. Nafion® tubing is a cationic-selective polymer that is used to pass currents and water for electrolysis at titanium and platinum surfaces. The gas bubble-free electrodes are easy to fabricate and can operate well even with typical, low-conductivity electrolytes. The gas bubble-free cathode seals to 1500 psi for high-pressure microhydraulic actuation
摘要:
Electrokinetic (“EK”) pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed-bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 μL/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.
摘要:
Methods and materials are described for the joining of plastics and other materials wherein polymerizable substances are diffused into the material to form a surface diffusion zone adjacent to the surface of the plastic workpiece to be joined. The surfaces are brought into contact and the polymerization reactions in the surface diffusion zone are initiated, creating thereby a strong bond across the contacting surfaces. High-performance engineered plastics such as polyetherimides, polyphenylenes, and polyether-ether-ketones are among the materials that are advantageously joined by this technique. Polymerizable substances including styrene and divinylbenzene are shown to give good bonds. Such joining methods can bond dissimilar materials difficult or impossible to join by other techniques. The surfaces to be joined are dry prior to initiation of the polymerization reaction, permitting repositioning and realignment of the surfaces as often as desired before joining. The present joining techniques do not clog or interfere with the structure of microfeatures on the surface of the workpieces to be joined, making this joining techniques especially advantageous for the fabrication of microfluidic devices. Such devices fabricated from high-performance engineered plastic joined by the present bonding techniques are shown to be capable of routine operation at high pressures and to withstand high-pressure cycling without damage.