Abstract:
In this patent, we teach methods to generate coherent X-ray and UUV rays beams for X ray and UUV microscopes using intense femtosecond pulses resulting the Ultra-Supercontinuum (USC) and Higher Harmonic Generation (HHG) from χ3 and χ5 media produce from electronic and molecular Kerr effect. The response of n2 (χ3) and n4 (χ5) at the optical frequency from instantaneously response of carrier phase of envelope results in odd HHG and spectral broadening about each harmonic on the anti-Stokes side of the pump pulse at wo typically in the visible, NIR, and MIR. From the slower molecular Kerr response on femtosecond to picosecond from orientation and molecular motion on n2 and n4 which follow the envelope of optical field of the laser gives rise to extreme broadening without HHG. The resulting spectra extend on the Stokes side towards the IR, RF to DC covering most of the electromagnetic spectrum. These HHG and Super broadening covering UUV to X rays and possibly to gamma ray regime for microscopes.
Abstract:
A laser medium includes a single crystal of chromium-doped LiScl-xInxGe1-ySiyO4, where 0≦x≦1 and 0≦y≦1. Preferably, x and y are not both 0. A laser, such as a tunable near infrared laser, can contain the laser medium.
Abstract translation:激光介质包括掺杂铬的LiScl-xInxGe1-ySiyO4的单晶,其中0 <= x <= 1且0 <= y <1。 优选地,x和y不都是0。诸如可调谐近红外激光器的激光器可以包含激光介质。
Abstract:
A glass composition for use as a laser medium, a method for producing the glass composition, and a laser apparatus including the glass composition are provided. The glass composition includes a host glass; a 3p component having a concentration of about 5 mole percent to about 10 mole percent; and at least one of a 6p component having a concentration of about 1 mole percent to about 5 mole percent and a 5p component having a concentration of about 1 mole percent to about 5 mole percent.
Abstract:
A glass composition for use as a laser medium, a method for producing the glass composition, and a laser apparatus including the glass composition are provided. The glass composition includes a host glass; a 3p component having a concentration of about 5 mole percent to about 10 mole percent; and at least one of a 6p component having a concentration of about 1 mole percent to about 5 mole percent and a 5p component having a concentration of about 1 mole percent to about 5 mole percent.
Abstract:
In this patent, we teach methods to generate coherent X-ray and UUV rays beams for X ray and UUV microscopes using intense femtosecond pulses resulting the Ultra-Supercontinuum (USC) and Higher Harmonic Generation (HHG) from χ3 and χ5 media produce from electronic and molecular Kerr effect. The response of n2 (χ3) and n4 (χ5) at the optical frequency from instantaneously response of carrier phase of envelope results in odd HHG and spectral broadening about each harmonic on the anti-Stokes side of the pump pulse at wo typically in the visible, NIR, and MIR. From the slower molecular Kerr response on femtosecond to picosecond from orientation and molecular motion on n2 and n4 which follow the envelope of optical field of the laser gives rise to extreme broadening without HHG. The resulting spectra extend on the Stokes side towards the IR, RF to DC covering most of the electromagnetic spectrum. These HHG and Super broadening covering UUV to X rays and possibly to gamma ray regime for microscopes.
Abstract:
A method for manufacturing a glass composition including a host glass, a 3p component having a concentration of about 5 mole percent to about 10 mole percent, and at least one of a 6p component having a concentration of about 1 mole percent to about 5 mole percent and a 5p component having a concentration of about 1 mole percent to about 5 mole percent, is provided. The method includes heating the host glass to a first predetermined temperature for a first period of time; mixing a powder including the 3p component and the at least one of the 5p component and the 6p component with the heated host glass into a glass/powder mixture; heating the glass/powder mixture to a second predetermined temperature for a second period of time; and cooling, after heating, the glass/powder mixture.