Abstract:
The analyte concentration, such as glucose, in a human or animal body is measured with an implantable sensor that generates measurement signals. The measurement signals are compressed through statistical techniques to produced compressed measurement data that can is easier to process and communicate. A base station carries the implantable sensor along with a signal processor, memory, and a transmitter. A display device is also disclosed that can receive the compressed measurement data from the base station for further processing and display.
Abstract:
An implantable sensor is provide which can be used for determining a concentration of at least one analyte in a medium, in particular a body tissue and/or a body fluid. The implantable sensor has a layered construction with at least one insulating carrier substrate and at least two electrodes which are arranged in at least two different layer planes of the implantable sensor and are electrically isolated from one another by the at least one insulating carrier substrate. The electrodes have electrode areas which face the medium when the sensor has been implanted, and are in contact with the medium over a large area and substantially uniformly, directly or via a generally analyte-permeable membrane layer.
Abstract:
An analysis device for analysis of a sample on a test element is provided that comprises at least one component configured to make electrical contact with at least one other component for electrical transmission therebetween. The at least one component generally comprises an injection-molded circuit mount, also called an MID, or molded interconnect device.
Abstract:
An implantable sensor is provide which can, be used for determining a concentration of at least one analyte in a medium, in particular a body tissue and/or a body fluid. The implantable sensor has a layered construction with at least one insulating carrier substrate and at least two electrodes which are arranged in at least two different layer planes of the implantable sensor and are electrically isolated from one another by the at least one insulating carrier substrate. The electrodes have electrode areas which face the medium when the sensor has been implanted, and are in contact with the medium over a large area and substantially uniformly, directly or via a generally analyte-permeable membrane layer.
Abstract:
The analyte concentration, such as glucose, in a human or animal body is measured with an implantable sensor that generates measurement signals. The measurement signals are compressed through statistical techniques to produced compressed measurement data that can is easier to process and communicate. A base station carries the implantable sensor along with a signal processor, memory, and a transmitter. A display device is also disclosed that can receive the compressed measurement data from the base station for further processing and display.
Abstract:
The invention relates to an electrochemical sensor for the determination of a concentration of at least one analyte in a medium, in particular a body tissue and/or a body fluid, to an apparatus that includes the electrochemical sensor, and to a use of the electrochemical sensor, and finally to a method for producing it. The electrochemical sensor has an isolation element and at least two electrodes. The at least two electrodes comprise at least one working electrode and at least one further electrode, in particular at least one counter electrode and/or at least one reference electrode. The at least two electrodes run parallel to one another and form an electrochemical measuring cell of the electrochemical sensor.
Abstract:
An analysis device for analysis of a sample on a test element is provided that comprises at least one component configured to make electrical contact with at least one other component for electrical transmission therebetween. The at least one component generally comprises an injection-molded circuit mount, also called an MID, or molded interconnect device.
Abstract:
The analyte concentration, such as glucose, in a human or animal body is measured with an implantable sensor that generates measurement signals. The measurement signals are compressed through statistical techniques to produced compressed measurement data that can is easier to process and communicate. A base station carries the implantable sensor along with a signal processor, memory, and a transmitter. A display device is also disclosed that can receive the compressed measurement data from the base station for further processing and display.