摘要:
A method for measuring overlay in semiconductor wafers includes obtaining diffraction based and imaging based measurements of the same target. The two separate measurements are then combined in a way that is consistent to both measurements to obtain an overlay measurement that has high precision and large range.
摘要:
The invention is a method and apparatus for determining characteristics of a sample. The system and method provide for detecting a monitor beam reflected off a mirror, where the monitor beam corresponds to the intensity of light incident upon the sample. The system and method also provide for detecting a measurement beam, where the measurement beam has been reflected off the sample being characterized. Both the monitor beam and the measurement beam are transmitted through the same transmission path, and detected by the same detector. Thus, potential sources of variations between the monitor beam and the measurement beam which are not due to the characteristics of the sample are minimized. Reflectivity information for the sample can be determined by comparing data corresponding to the measurement beam relative to data corresponding the monitor beam.
摘要:
The invention is a method and apparatus for determining characteristics of a sample. The system and method provide for detecting a monitor beam reflected off a mirror, where the monitor beam corresponds to the intensity of light incident upon the sample. The system and method also provide for detecting a measurement beam, where the measurement beam has been reflected off the sample being characterized. Both the monitor beam and the measurement beam are transmitted through the same transmission path, and detected by the same detector. Thus, potential sources of variations between the monitor beam and the measurement beam which are not due to the characteristics of the sample are minimized. Reflectivity information for the sample can be determined by comparing data corresponding to the measurement beam relative to data corresponding the monitor beam.
摘要:
Methods and systems for fabricating platelets of a monochromator for X-ray photoelectron spectroscopy (XPS) are disclosed. For example, a method of fabricating a platelet of a monochromator for X-ray photoelectron spectroscopy involves placing a crystal on a stage of an X-ray measuring apparatus, the crystal having a top surface. The method also involves measuring, by X-ray reflection, an orientation of a crystal plane of the crystal, the crystal plane beneath the top surface of the crystal and having a primary axis. The method also involves measuring a surface angle of the top surface of the crystal by measuring a light beam reflected from the top surface of the crystal.
摘要:
Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including: but not limited to, critical dimension and overlay misregistration; defects and thin film characteristics; critical dimension and defects; critical dimension and thin film characteristics; critical dimension, thin film characteristics and defects; macro defects and micro defects; flatness, thin film characteristics and defects; overlay misregistration and flatness; an implant characteristic and defects; and adhesion and thickness. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.
摘要:
Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including: but not limited to, critical dimension and overlay misregistration; defects and thin film characteristics; critical dimension and defects; critical dimension and thin film characteristics; critical dimension, thin film characteristics and defects; macro defects and micro defects; flatness, thin film characteristics and defects; overlay misregistration and flatness; an implant characteristic and defects; and adhesion and thickness. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.
摘要:
A system for simultaneously inspecting the frontsides and backsides of semiconductor wafers for defects is disclosed. The system rotates the semiconductor wafer while the frontside and backside surfaces are generally simultaneously optically scanned for defects. Rotation is induced by providing contact between the beveled edges of the semiconductor wafer and roller bearings rotationally driven by a motor. The wafer is supported in a tilted or semi-upright orientation such that support is provided by gravity. This tilted supporting orientation permits both the frontside and the backside of the wafer to be viewed simultaneously by a frontside inspection device and a backside inspection device.
摘要:
Systems and methods for characterizing films by X-ray photoelectron spectroscopy (XPS) are disclosed. For example, a system for characterizing a film may include an X-ray source for generating an X-ray beam having an energy below the k-edge of silicon. A sample holder may be included for positioning a sample in a pathway of the X-ray beam. A first detector may be included for collecting an XPS signal generated by bombarding the sample with the X-ray beam. A second detector may be included for collecting an X-ray fluorescence (XRF) signal generated by bombarding the sample with the X-ray beam. Monitoring/estimation of the primary X-ray flux at the analysis site may be provided by X-ray flux detectors near and at the analysis site. Both XRF and XPS signals may be normalized to the (estimated) primary X-ray flux to enable film thickness or dose measurement without the need to employ signal intensity ratios.
摘要:
A periodic structure is illuminated by polychromatic electromagnetic radiation. Radiation from the structure is collected and divided into two rays having different polarization states. The two rays are detected from which one or more parameters of the periodic structure may be derived. In another embodiment, when the periodic structure is illuminated by a polychromatic electromagnetic radiation, the collected radiation from the structure is passed through a polarization element having a polarization plane. The element and the polychromatic beam are controlled so that the polarization plane of the element are at two or more different orientations with respect to the plane of incidence of the polychromatic beam. Radiation that has passed through the element is detected when the plane of polarization is at the two or more positions so that one or more parameters of the periodic structure may be derived from the detected signals. At least one of the orientations of the plane of polarization is substantially stationary when the detection takes place. To have as small a footprint as possible, one employs an optical device that includes a first element directing a polychromatic beam of electromagnetic radiation to the structure and a second optical element collecting radiation from the structure where the two elements form an integral unit or are attached together to form an integrated unit. To reduce the footprint, the measurement instrument and the wafer are both moved. In one embodiment, both the apparatus and the wafer undergo translational motion transverse to each other. In a different arrangement, one of the two motions is translational and the other is rotational. Any one of the above-described embodiments may be included in an integrated processing and detection apparatus which also includes a processing system processing the sample, where the processing system is responsive to the output of any one of the above embodiments for adjusting a processing parameter.
摘要:
Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including: but not limited to, critical dimension and overlay misregistration; defects and thin film characteristics; critical dimension and defects; critical dimension and thin film characteristics; critical dimension, thin film characteristics and defects; macro defects and micro defects; flatness, thin film characteristics and defects; overlay misregistration and flatness; an implant characteristic and defects; and adhesion and thickness. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.