摘要:
An integrated circuit (10) is disclosed comprising a fundamental frequency oscillator comprising a reference node (32) whose voltage varies between a high threshold and a low threshold. The fundamental frequency oscillator is operable to generate a first output at the fundamental frequency on a first output node (36). The integrated circuit (10) also comprises a circuit (C2) coupled to the reference node. The circuit (C2) is operable to sense the voltage at the reference node (32), to determine when the voltage exceeds an intermediate threshold between the high threshold and the low threshold, and to generate a second output in response to the determination. The integrated circuit (10) also comprises logic (40) coupled to the circuit (C2) and load circuitry (50) coupled to the logic (40). The logic (40) is operable to generate an output signal at an output frequency greater than the fundamental frequency in response to the second output and the first output.
摘要:
An internal circuitry protection scheme which protects on-IC circuitry when an external regulator voltage pin is shorted to a higher voltage. The circuit prevents damage to the on-die circuitry that is on the internal voltage rail, by clamping the received voltage, thereby eliminating the chance of damaging the on die circuitry. The circuit offers protection even if the voltage difference is large, but the difference remains small between the internal rail and the external regulated voltage under normal operation.
摘要:
One aspect of the invention is an integrated circuit (10 or 110) comprising an amplifier (11 or 111) having at least two poles in its frequency response and an output impedance compensation circuit (M1A, M2, M3, AC1 or M1A, M2, M3, M4, AC1) coupled to an output node (30) of the amplifier (11 or 111). The output impedance compensation circuit (M1A, M2, M3, AC1 or M1A, M2, M3, M4, AC1) is operable to create a feedback signal proportional to the impedance of an output load (50) coupled to the output node (30), and create a zero in the frequency response of the amplifier (11 or 111) in response to the feedback signal between the at least two poles.
摘要:
A circuit for protecting a transistor against electrical transients. The circuit comprises a first diode coupled between a first terminal coupled to a power supply and a control terminal of the protected transistor. The circuit also comprises a second diode and a resistor coupling the control terminal of the protected transistor to a reference potential. A second transistor is coupled in shunt to the protected transistor. The voltage on the control terminal of the second transistor is determined by the current through the resistor. The embodiments may be implemented in an integrated circuit wherein the second, shunting transistor is formed from parasitic elements within the semiconductor body in which the protected transistor is formed. In one embodiment, the protected MOS transistor is formed in an n-well 504 and a shunting bipolar transistor is formed between the n-well 504 and an n-doped guard ring 500 formed adjacent to the n-well in the p-doped substrate 508.
摘要:
A transistor including a source region 506 in a semiconductor body 502; a bulk region 508 in the semiconductor body adjacent the source region; a drain region in the semiconductor body adjacent the bulk region but opposite the source region, the drain region including doped regions 504,514 of n and p dopant types; and a field plate 516 formed over the semiconductor body adjacent the drain region between the drain region and the bulk region.
摘要:
A controlled area network (CAN) driver provides improved symmetry between its differential output signals CAN-H and CAN-L, and provides protection for its low voltage devices from voltage transients occurring on its output lines. A plurality of CAN drivers 80 are serially interconnected to form a driver system, wherein each downstream driver stage receives a time-delayed form of the digital input signal TxD, each stage providing a time-delayed contribution to the differential output signals of the overall driver system.
摘要:
Provided is a symmetrical filter that uses a single comparator. In addition to a voltage divider, a current regulator, and a comparator, the filter of the invention provides control logic that turns on or off a pull up switch and/or pull down switch in order to fully charge or fully discharge a capacitor. Accordingly, in one aspect, the invention is a control logic for a symmetrical filter. Furthermore, timing logic is provided to provide for a more rigorous symmetrical filter performance.
摘要:
A internal circuitry protection scheme which protects on-IC circuitry when an external pin is shorted to a higher than normal voltage. The disclosed solution eliminates cross-talk due to a parasitic NPN.
摘要:
In accordance with the present invention, an output current limit circuit for protecting a power MOS output device of an integrated circuit from an excessive drain current comprises a power MOS device 110, sensing circuitry 30 to sense a predetermined trigger current, and limitation circuitry 20 to reduce a gate-source voltage on MOS output device 110 to a predetermined approximately fixed value. A drain current I.sub.D flows through power MOS device 110 from output terminal 102 in response to the gate-source voltage. A short circuit condition may allow an excessive amount of drain current I.sub.D to flow through output terminal 102. The gate-source voltage is reduced in response to sensing the trigger current. Reducing the gate-source voltage raises a drain-source resistance of MOS device 110 and reduces drain current I.sub.D so that MOS device 110 is not damaged by the short circuit condition.
摘要:
An EEPROM cell (10) formed on a substrate (18) using conventional process steps is provided. The cell (10) includes first (12) and second (14) conductive regions in the substrate (18) below the substrate's outer surface (28), and the first (12) and second (14) conductive regions are laterally displaced from one another by a predetermined distance (32). The cell (10) also includes an insulating layer (20) outwardly from the outer surface (28) of the substrate (18) positioned so that its edges are substantially in alignment between the first (12) and second (14) conductive regions. The cell (10) further includes a floating gate layer (22) outwardly from the insulating layer (20) and in substantially the same shape as the insulating layer (20). The cell (10) also includes a diffusion region (24 or 26) that extends laterally from at least one of the first (12) and second (14) conductive regions so as to overlap with the insulating layer (20). The diffusion region (24 or 26) provides a source of charge for placement on the floating gate layer (22) when programming the EEPROM cell (10).