摘要:
A memory system comprises a memory controller, an address RAM coupled to the memory controller, and a non-volatile memory coupled to the memory controller. The non-volatile memory has an address portion and a data portion. The address portion of the non-volatile memory provides data portion addresses and data portion addresses of valid data to the memory controller. The memory controller loads the data portion addresses and stores them in the address RAM at locations defined by the data portion addresses of valid data into the address RAM. The memory controller uses the data portion addresses, and locations of data blocks within the address RAM, to locate the data blocks within the data portion of non-volatile memory. The memory controller uses the data portion addresses, and locations of the data block addresses within the address RAM, to locate data blocks within the data portion of non-volatile memory
摘要:
A system has an emulation memory having a plurality of sectors for storing information. A controller calculates a number of addresses used divided by a number of valid records in a predetermined address range of the emulation memory. An amount of remaining addresses in a currently used space of the emulation memory which have not been used to store information is calculated. A determination is made whether the calculation is greater than a first predetermined number and whether the amount of remaining addresses is greater than a second predetermined number. If both the fraction is greater than the first predetermined number and the amount of remaining addresses is greater than the second predetermined number, any subsequent update requests are responded to using the currently used space of the emulation memory. Otherwise a compression of the emulation memory is required by copying valid data to an available sector.
摘要:
A semiconductor memory device comprises a volatile memory and a non-volatile memory including a plurality of sectors. Each of the plurality of sectors configured to store a sector status indicator and a plurality of data records. A control module is coupled to the non-volatile memory and the volatile memory. The control module manages the sectors by scanning the sectors to identify the records with invalid data; changing the status indicator of a particular sector when all of the records in the particular sector are invalid, and discontinuing scanning the particular sector while all of the records in the particular sector are invalid.
摘要:
In a system having an emulation memory having a first sector of non-volatile memory for storing information, wherein the non-volatile memory includes a plurality of records, a method includes determining if a last record written of the plurality of records is a compromised record; if the last record written is not a compromised record, performing a next write to a record of the plurality of records that is next to the last record written; and if the last record written is a comprised record: determining an address of the compromised record; writing valid data for the address of the compromised record into the record of the plurality of records that is next to the compromised record; and writing data into a record that is next to the record of the plurality of records that is next to the compromised record.
摘要:
A method and system wherein a volatile memory is partitioned to have a first percentage of address space dedicated to a first classification of data which is data that is expected to have greater than a predetermined number of times of being modified and a second percentage of address space dedicated to a second classification of data which is data that is expected to have less than the predetermined probability of being modified. Address assignment of data to be stored in the volatile memory is made on a basis of predicted change of the data. Memory addresses of the first and second percentages of address space are respectively assigned to first and second sections of nonvolatile memory. The memory addresses of the first percentage initially consume a smaller percentage of an address map of the first section than the memory addresses of the second percentage of the second section.
摘要:
A memory cell includes a first bi-directional resistive element having a cathode coupled to a first power rail and an anode coupled to an internal node, a second bi-directional resistive element having a cathode coupled to the internal node and an anode coupled to a second power rail, and a first transistor having a control electrode coupled to the internal node, a first current electrode coupled to a first bitline, and a second current electrode coupled to a third power rail.
摘要:
A method of erasing a non-volatile semiconductor memory device comprising determining a number of bit cells that failed to erase verify during an erase operation. The bit cells are included in a subset of bit cells in an array of bit cells. The method further comprises determining whether an Error Correction Code (ECC) correction has been previously performed for the subset of bit cells. The erase operation is considered successful if the number of bit cells that failed to erase verify after a predetermined number of erase pulses is below a threshold number and the ECC correction has not been performed for the subset of bit cells.
摘要:
A method of forming an NVM cell and a logic transistor uses a semiconductor substrate. In an NVM region, a polysilicon select gate of the NVM cell is formed over a first thermally-grown oxygen-containing layer, and in a logic region, a work-function-setting material is formed over a high-k dielectric and a polysilicon dummy gate is formed over the work-function-setting material. Source/drains, a sidewall spacer, and silicided regions of the logic transistor are formed after the first thermally-grown oxygen-containing layer is formed. The polysilicon dummy gate is replaced by a metal gate. The logic transistor is protected while the NVM cell is then formed including forming a charge storage region.
摘要:
A method of forming an NVM cell and a logic transistor uses a semiconductor substrate. A polysilicon select gate of the NVM cell is formed over a first thermally-grown oxygen-containing layer in an NVM region and a polysilicon dummy gate is formed over a second thermally-grown oxygen-containing layer in a logic region. Source/drains, a sidewall spacer, and silicided regions of the logic transistor are formed after the first and second thermally-grown oxygen-containing layers are formed. The second thermally-grown oxygen-containing layer and the dummy gate are replaced by a metal gate and a high-k dielectric. The logic transistor is protected while the NVM cell is then formed including forming a charge storage layer.
摘要:
A memory cell includes a single bi-directional resistive memory element (BRME) having a first terminal directly connected to a first power rail and a second terminal coupled to an internal node; and a first transistor having a control electrode coupled to the internal node, and a first current electrode coupled to a first bitline, and a second current electrode coupled to one of a group consisting of: a read wordline and the first power rail.