摘要:
Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.
摘要:
Methods are described for forming CZTS absorber layers in TFPV devices with graded compositions and graded bandgaps. Methods are described for utilizing at least one of Zn, Ge, or Ag to alter the bandgap within the absorber layer. Methods are described for utilizing Te, S, Se, O, Cd, Hg, or Sn to alter the bandgap within the absorber layer. Methods are described for utilizing either a 2-step process or a 4-step process to alter the bandgap within the absorber layer.
摘要:
Method for forming back contact stacks for CIGS and CZTS TFPV solar cells are described wherein some embodiments include adhesion promoter layers, bulk current transport layers, stress management/diffusion barrier layers, optical reflector layers, and ohmic contact layers. Other back contact stacks include adhesion promoter layers, bulk current transport layers, diffusion barrier layers, and ohmic contact layers.
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
摘要:
A method of processing a substrate comprising depositing a layer comprising amorphous carbon on the substrate and then laser annealing the substrate is provided. Optionally, the layer further comprises a dopant selected from the group consisting of nitrogen, boron, phosphorus, fluorine, and combinations thereof. In one aspect, the layer comprising amorphous carbon is an anti-reflective coating and an absorber layer that absorbs electromagnetic radiation emitted by the laser and anneals a top surface layer of the substrate.
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
摘要翻译:将以10.6μm发光的第一激光源例如CO 2 2作为线束和第二激光源聚焦在硅晶片上的热处理装置和方法,例如, 在808nm处发射的GaAs激光棒作为围绕线束的较大光束聚焦在晶片上。 沿着线束的窄尺寸的方向同步地扫描两个光束,以在由较大的光束激活时从线束产生窄的加热脉冲。 GaAs辐射的能量大于硅带隙能量,并产生自由载流子。 CO 2辐射的能量小于硅带隙能量,因此硅对其透明,但是长波长辐射被自由载流子吸收。
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
摘要:
Methods are described for forming CIGS absorber layers in TFPV devices with graded compositions and graded band gaps. Methods are described for utilizing Ag to increase the band gap at the front surface of the absorber layer. Methods are described for utilizing Al to increase the band gap at the front surface of the absorber layer. Methods are described for utilizing metal chalcogenide layers to impact the band gap and the morphology of the absorber layer.
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.