摘要:
A probe for detecting or irradiating light includes a displaceable support member on a substrate, a tip formed on the support member, and a bonding layer for bonding the tip onto the support member. The tip has a micro aperture. When a light-shielding layer is further formed on a surface of the tip, the micro aperture is formed on the light-shielding layer. The tip consists of a light transmission material.
摘要:
A probe for detecting or irradiating light includes a displaceable support member on a substrate, a tip formed on the support member, and a bonding layer for bonding the tip onto the support member. The tip has a micro aperture. When a light-shielding layer is further formed on a surface of the tip, the micro aperture is formed on the light-shielding layer. The tip consists of a light transmission material.
摘要:
In a method of manufacturing a probe with a minute aperture, the probe is coated with conductive material, a tip of the probe is brought into contact with a conductive substrate and a voltage is applied between the probe and the substrate to remove the coating material at the tip of the probe and form the minute aperture at the tip of the probe. The thus-fabricated probe can be used in a scanning near-field optical microscope for observing an object on the basis of a change in intensity of near-field light and an information recording and/or reproducing apparatus for reproducing information recorded in a record medium by using near-field light.
摘要:
A probe for detecting light or irradiating light comprises a cantilever supported at an end thereof by a substrate, a hollow tip formed at a free end of the cantilever, a microaperture formed at the end of the tip, and a hollow waveguide formed inside the cantilever. A method for producing a probe for light detection or light irradiation which comprises the steps of working a substrate to form a groove therein, forming a flat plate-shaped cover portion on the groove to form a hollow waveguide having an opening in a part thereof, forming a hollow tip having a microaperture on the opening, and removing a part of the substrate by etching, to form a cantilever.
摘要:
A near-field optical probe comprises a micro-aperture for irradiating and/or detecting evanescent light through the front end of the probe, an elastically deformable cantilever supporting the micro-aperture at the free end thereof, and a surface plasmon polariton waveguide arranged on the cantilever to guide light from a light source to the micro-aperture and/or to guide light from a light source introduced through the micro-aperture.
摘要:
An optical prove for detecting or irradiating evanescent light is manufactured by forming a film having a regulated film thickness on a substrate, then forming a recess from the rear surface of the substrate, and forming a through hole in the film from the side of the recess by etching. The obtained optical probe has a micro-aperture at the tip of the through hole and usually, a plurality of optical probes each having a micro-aperture of uniform profile are formed on a single substrate. In the recess, light-receiving or light-irradiating means may be provided.
摘要:
A probe for detecting light or irradiating light comprises a cantilever supported at an end thereof by a substrate, a hollow tip formed at a free end of the cantilever, a microaperture formed at the end of the tip, and a hollow waveguide formed inside the cantilever.A method for producing a probe for light detection or light irradiation which comprises the steps of working a substrate to form a groove therein, forming a flat plate-shaped cover portion on the groove to form a hollow waveguide having an opening in a part thereof, forming a hollow tip having a microaperture on the opening, and removing a part of the substrate by etching, to form a cantilever.
摘要:
A probe for detecting light or irradiating light comprises a cantilever supported at an end thereof by a substrate, a hollow tip formed at a free end of the cantilever, a microaperture formed at the end of the tip, and a hollow waveguide formed inside the cantilever.A method for producing a probe for light detection or light irradiation which comprises the steps of working a substrate to form a groove therein, forming a flat plate-shaped cover portion on the groove to form a hollow waveguide having an opening in a part thereof, forming a hollow tip having a microaperture on the opeining, and removing a part of the substrate by etching, to form a cantilever.
摘要:
Disclosed herein is a light modulating apparatus comprising first and second two periodic structures each having a period smaller than the wavelength of light emitted from a light source, and a moving means for relatively moving the two periodic structures, wherein the surface of the first periodic structure is brought near to the surface of the second periodic structure to a space not longer than the wavelength to arrange them in a state opposed to each other, the light incident on the first periodic structure is converted into near-field light by the first periodic structure, the converted near-field light is transmitted through the second periodic structure and converted into propagation light by scattering the near-field light on the back surface of the second periodic structure, and the intensity of the propagation light is modulated by relatively moving the two periodic structures by the moving means.
摘要:
A probe with a micro-projection for a near-field scanning optical microscope (NSOM) which comprises a substrate, first and second junction layers which are arranged on the substrate and electrically isolated from each other and which are made of an electroconductive material, and a micro-projection bonded to the substrate by way of the first and second junction layers and having a cavity in the inside. The micro-projection has first and second material layer made of different respective materials and laid one on the other to form a junction interlayer therebetween. The first and second material layers are electrically connected to the first and second junction layers respectively and independently.